A Consumer Library Interfaceto DWARF
David Anderson

1. INTRODUCTION

This document describes an interfacelitmiwarf, a library of functions to pndde access to WARF
delugging information records, \MARF line number information, WARF address range and global
names information, weak names informationVARF frame description information, IARF static
function names, WARF static variables, andARF type information.

The document has long mentioned the "Unix International Programming Languages Special Interest
Group" (PLSIG), under whose auspices th&V/ARF committee was formed around 1991Unix
International” was disbanded in the 1990s and no longer exists.

The DNARF committee published\WARF2 July 27, 1993.

In the mid 1990s this document and the library it describes (which the commiteeeemdorsed, hang
decided not to endorse or appeoay particular library interface) was madgadable on the internet by
Silcon Graphics, Inc.

In 2005 the DVARF committee bgen an dfiliation with FreeStandardsar In 2007 FreeStandardsgor
merged with The Linux Bundation. Th®WARF committee dropped itsfdfation with FreeStandardsgr
in 2007 and established the alfistd.og website. Seéhttp://www.dwarfstd.og" for current information
on standardization activities and a gaf the standard.

1.1 Copyright
Copyright 1993-2006 Silicon Graphics, Inc.

Copyright 2007-2009 David Anderson.

Permission is hereby granted to gap republish or use gnor dl of this document without restriction
except that when publishing more than a small amount of the document please acknowledge Silicon
Graphics, Inc and David Anderson.

This document is distributed in the hope that dud be useful, but WITHOUT ANY WRRANTY;
without esen the implied warranty of MERCHANABILITY or FITNESS FOR A RRTICULAR
PURPOSE.

1.2 Purpose and Scope

The purpose of this document is to document a library of functions to act®8KRMP dehlugging
information. There is no effort made in this document to address the creation of these records as those
issues are addressed separately (see "A Producer Library Interfadé RMAD).

Additionally, the focus of this document is the functional irded, and as such, implementation as well as
optimization issues are intentionally ignored.

1.3 Document History

A document vas written about 1991 which had similar layout and iat&$. Writterby people from Hal

rev 1.85, 27 Newember 2009 -1-

Corporation, That document described a library for readifgARF1. Theauthors distributed paper
copies to the committee with the clearly expressed intent to propose the document as a suppa@ted interf
definition. Thecommittee decided not to pursue a library definition.

SGI wrote the document you arewnoeading in 1993 with a similar layout and content argirgration,

but it was complete documentwsdte with the intent to read WARF2 (the DVARF version then in
existence). Thantent was (and is) to also s future revisions of B/ARFE All the function interdces
were changed in 1994 to uniformly return a simple integer success-codéNs&d ¥ OK etc), generally
following the recommendations in the chapter titled "Candy Machine dne='f of "Writing Solid Code",
a book by Stge Maguire (published by Microsoft Press).

1.4 Definitions

DWARF debugging information entries (DIEs) are thgnsents of information placed in thelebug_*

sections by compilers, assemblers, and linkage editors that, in conjunction with line number entries, are
necessary for symbolic source4t debugging. Referto the latest DWARF Debugging Information

Format" from www.dwarfstd.ay for a more complete description of these entries.

This document adopts all the terms and definition©WARF Debugging Information Format" versions 2
and 3. It originally focused on the implementation at Silicon Graphics, lucndy attempts to be more
generally useful.

1.5 Overview

The remaining sections of this document describe the proposed interfadedwar f , first by describing

the purpose of additional types ihefd by the interface, followed by descriptions of theilable
operations. Thiglocument assumes you are thoroughly familiar with the information contained in the
DWARF Debugging Information Format document.

We eparate the functions intoseal categories to emphasize that not all consumart to use all the
functions. V¢ all the catgories Dehgger Internal-level, High-level, and Miscellaneous not because one
is more important than another but as a way of making the ratlyer $at of function calls easier to
understand.

Unless otherwise specified, all functions and structures should ée takbeing designed for Dejyer
consumers.

The Debugger Interface of this library is intended to be used hygdels. Theanterface is lov-level
(close to dwarf) but suppresses irvale detail. A debugger will want to absorb all of some sections at
startup and will want to see little or nothing of some sectigosp at need. Andven then will probably
want to absorb only the information in a single compilation unit at a tifndebugger does not care about
implementation details of the library.

The Internal-lgel Interface is for a WARF prettyprinter and cheek A thorough prettyprinter will ant

to know al kinds of internal things (lie ectual FORM numbers and actual offsets) so it can check for
appropriate structure in theVBARF data and print (on request) all that internal information for human
users and libdwarf authors and compileiters. Callsin this interface provide data a debugger does not
care about.

The High-level Interface is for higher kel access (it is not really a highvd interface!). Programsuch as
disassemblers will want to be able to displayvaieinformation about functions and line numbers without
having to ivest too much effort in looking at\BARF.

The miscellaneous interface is just what is lgfirothe error handler functions.

The following is a brief mention of the changes in this libdwarf from the Eivfldraft for DVARF \ersion
1 and recent changes.

rev 1.85, 27 Newember 2009 -2-

1.6 Items Changed

Added dwarf_set_reloc_application() and the default automatic application of EIf 'rela’ relocations to
DWARF sections (such rela sections appear irileg,fnot in &ecutables or shared objects, in general).
The dwarf_set reloc_application() routine lets a consumer tufrth&f automatic application ofela’
relocations if desired (it is not clear wlnyone would really want to do that, but possibly a consumer
could write its own relocation application). An example application the¢rses a set of DIEsas added

to the nev dwarfexample directory (not in this libdwarf directobyt in parallel to it). (July 10, 2009)

Added dvarf_get ARG _name() (and the FORMTAand so on) interface functions so applications can get
the string of the AG, Attribute, etc as needed. (June 2009)

Added dwarf_get ranges_a() andafvloclist from_e&pr_a() functions which add guments allowing a
correct address_size when the address_sidesvby compilation unit (a varying address_size is quite rare
as of May 2009). (May 2009)

Added dvarf_set frame_sameale(), and darf_set frame_undefinedale() to complete the set of

frame-information functions needed to all@n aplication get all frame information returned correctly
(meaning that it can be correctly interpreted) for all ABBocumented darf _set frame cfa value().

Corrected spelling to dwarf_set_frame_rule_initialue(). (April2009).

Added support for various\BARF3 features, but primarily awdrame-information interface tailorable at
run-time to more than a single ABl. See dwarf _set frame_rule_initial_value(),
dwarf_set frame_rule_table_size(), ailv set_frame_cfa alue(). Sealso dvarf_get fde info_for_reg3()

and dwarf_get fde info_for_cfa g®). (April 2006)

Added support for B/ARF3 .debug_pubtypes section. Corrected various leakisi(rg dealloc() calls,
adding n& functions) and corrected dwarf_formstring() documentation.

Added dwarf_srclines_dealloc() as the previous deallocation method documented for data returned by
dwarf_srclines() was incapable of freeing all the allocated storage (14 July 2005).

dwarf_netglob(), dwarf_globname(), and dwarf_globdie() were all changed to operate on the items in the
.debug_pubnames section.

All functions were modified to return solely an error code. Data is returned through pomiareats.
This males writing safe and correct library-using-code far eadter justification for this approach, see
the chapter titled "Candy Machine Interfaces" in the book "Writing Solid Code" og Bleguire.

1.7 Items Removed

Dwarf_Type was remeed snce types are no longer speciawarf_typeof() was remad snce types are
no longer special.

Dwarf_Ellist was remeed since element lists no longer are a special format.
Dwarf_Bounds was remved snce bounds hae been generalized.

dwarf_netdie() was replaced by édwf net _cu_header() to reflect the real wayVBRF is oganized.
The dvarf_netdie() was only useful for getting to compilation uniglmnings, so it does not seem harmful
to remave it in favar of a more direct function.

dwarf_childcnt() is remeed on gounds that no good use was apparent.

dwarf_prerline() and dvarf_netline() were remeed on grounds this is better left to a debugger to do.
Similarly, dwarf_dieline() was remeed.

dwarf_islstline() was renved as it was not meaningful for the reviseMIB\RF line operations.

Any libdwarf implementation might well decide to support all the reddunctionality and to retain the
DWARF Version 1 meanings of that functionalityhis would be dificult because the original libcf
draft specification used traditional C library interfaces which confuse ahees returned by successful

rev 1.85, 27 Newember 2009 -3-

calls with exceptional conditions Bkfailures and 'no more data’ indications.

1.8 Revision History

March 93 Work on DWARF2 SGI draft begins
June 94 The function returns are changed to return an error/success code only.
April 2006: Support for BVARF3 consumer operations is close to completion.

2. Types Definitions

2.1 General Description

Thelibdwarf.h header file contains typedefs and preprocessor definitions of types and symbolic names used
to reference objects dibdwarf. The types defined by typedefs containedlilodwarf.h all use the
convention of addingDwar f _ as a prefix and can be placed in three categories:

« Scalar types : The scalar typesidedl inlibdwarf.h are defined primarily for notational coenience
and identiication. Dependingn the individual defition, they are interpreted as a value, a pointer
or as a flag.

« Aggregae types : Some alues can not be represented by a single scalar type;ntbst be
represented by a collection of, or as a union of, scalar and/ogaiggrgoes.

« Opaque types : The complete idéfon of these types is intentionally omitted; their use is as handles
for query operations, which will yield either an instance of another opaque type to be used in another
guery or an nstance of a scalar or aggae type, which is the actual result.

2.2 Scalar Types
The following are the defined bibdwarf.h:

typedef int Dwar f _Bool ;

typedef unsigned long | ong Dwarf O f;

typedef unsigned | ong | ong Dwarf_Unsi gned;

t ypedef unsi gned short Dwar f _Hal f;

t ypedef unsi gned char Dwar f _Smal | ;

typedef signed |long |ong Dwar f _Si gned;

typedef unsigned | ong | ong Dwarf _Addr;

typedef void *Dwarf_Ptr;

typedef void (*Dwarf _Handl er) (Dwarf_Error *error, Dwarf_ Ptr errarg);

Dwarf _Ptr is an address for use by the host program calling the Jibmatryfor representing pc-
values/addresses within the target objelet. f Dwarf Addr is for pc-values within the target objeibe.f
The sample scalar type assignmentsvabae for alibdwarf.h that can read and write 32-bit or 64-bit
binaries on a 32-bit or 64-bit host machine. The types mustdéfned appropriately for each
implementation of libdwarf. A description of these scalar types in the SGI/MIPS environmentes mji
Figure 1.

rev 1.85, 27 Neember 2009 -4 -

NAME SIZE ALIGNMENT PURPOSE
Dwarf_Bool 4 4 Boolean states
Dwarf_ Off 8 8 Unsigned file offset
Dwarf_Unsigned 8 8 Unsigned large integer
Dwarf_Half 2 2 Unsigned medium integer
Dwarf_Small 1 1 Unsigned small integer
Dwarf_Signed 8 8 Sgned large integer
Dwarf_Addr 8 8 Program address
(target program)
Dwarf_Ptr 4|8 4|8 Dwarf section pointer
(host program)
Dwarf_Handler 4|8 4|8 Pointeto
error handler function

Figurel. Scalar Types

2.3 Aggregate Types

The following aggrgate types are defed by libdwarf.h: Dwarf_Loc, Dwarf_Locdesc,
Dwar f _Bl ock, Dwarf _Frame_Op. Dwarf_Regtabl e. Dwarf_Regtabl e3. While most of

I i bdwar f acts on or returns simple values or opaque pointer types, this small set of structures seems
useful.

2.3.1 Location Record

TheDwar f _Loc type identifies a single atom of a location description or a location expression.

typedef struct {

Dwar f _Smal | I r_atom

Dwar f _Unsi gned I r _nunber;

Dwar f _Unsi gned I r_nunber2;

Dwar f _Unsi gned Ir_offset;
} Dwarf_Loc;

Thel r _at omidentifies the atom corresponding to tB&/ OP_* definition in dwarf.h and it represents
the operation to be performed in order to locate the item in question.

Thel r _nunber field is the operand to be used in the calculation spddify thel r _at omfield; not all
atoms use thisidld. Someatom operations imply signed numbers so it is necessary to cast this to a
Dwar f _Si gned type for those operations.

Thel r _nunber 2 field is the second operand specified byltheat omfield; onlyDW OP_BREGX has
this field. Someatom operations imply signed numbers so it may be necessary to cast this to a
Dwar f _Si gned type for those operations.

Thelr _of fset field is the byte déet (within the block the location record came from) of the atom

specifed by thel r _at omfield. Thisis set on all atoms. This is useful for operatidig OP_SKI P and
DW OP_BRA.

2.3.2 Location Description

The Dwar f _Locdesc type represents an ordered listiyfar f _Loc records used in the calculation to

rev 1.85, 27 Newember 2009 -5-

locate an item. Note that in marases, the location can only be calculated at runtime of the associated
program.

typedef struct {

Dwar f _Addr I d_I opc;
Dwar f _Addr [d_hi pc;
Dwar f _Unsi gned | d_cents;
Dwarf _Loc* I d_s;

} Dwarf_Locdesc;

Thel d_I opc andl d_hi pc fields provide an address range for which this location descriptatids v
Both of these fields are set zero if the location descriptor is valid throughout the scope of the item it is
associated with. These addresses are virtual memory addressedsetstfaim-something. Thertual
memory addresses do not account for dseement (none of the pcalues from libdwarf do that, it is up to
the consumer to do that).

Thel d_cent s field contains a count of the numbeDsfar f _Loc entries pointed to by tHed_s field.

Thel d_s field points to an array @war f _Loc records.

2.3.3 Data Block

The Dwarf Bl ock type is used to contain the value of an attribute whose form is either
DW FORM bl ock1, DW FORM bl ock2, DW FORM bl ock4, DW FORM bl ock8, or
DW FORM bl ock. Its intended use is to dedr the value for an attribute of wof these forms.

t ypedef struct {
Dwar f _Unsi gned bl | en;
Dwarf _Ptr bl dat a;
} Dwarf Bl ock;

Thebl _| en field contains the length in bytes of the data pointed to blgltheat a field.

The bl _dat a field contains a pointer to the uninterpreted data. Since wealxaarf _Ptr here one
must cop the pointer to some other type (typicallyamsi gned char *) so ae can add increments to
index through the data. The data pointed tdiby dat a is not necessarily at gruseful alignment.

2.3.4 Frame Operation Codes: DWARF 2

This interface is adequate foMARF2 but not for BVARF3. A separate interface usable fotMBRF3
and for DNARF2 is described belo

The DNARF2Dwar f _Fr ame_Qp type is used to contain the data of a single instruction of an instruction-
sequence of le-level information from the section containing frame information. This is ordinarily used
by Internal-leel Consumers trying to printverything in detail.

rev 1.85, 27 Neember 2009 -6-

typedef struct {
Dwarf_Small fp_base_ op;
Dwarf_Smal |l fp_extended_op;
Dwar f _Hal f fp_register;
Dwar f _Si gned fp_offset;
Dwarf_Offset fp_instr_offset;
} Dwarf_Frane_Op;

f p_base_op is the 2-bit basic op codef p_extended_op is the 6-bit extended opcode (if
f p_base_op indicated there was an extended op code) and is zero otherwise.

fp_register is ary (or the first) register value as defined in tBal | Franme Instruction
Encodi ngs figure in thedwar f document. lfhot used with the Op it is 0.

fp_offset is the address, delta, offset, or second register as defined irCahk Frane
I nstruction Encodi ngs figure in thedwar f document. Ifthis is anaddr ess then the walue
should be cast tbDwar f _Addr) before being used. In wmmplementation this field *must* be as dar
as the larger of Dwarf_Signed and Dwarf_Addr for this to work propdirlyot used with the op it is 0.

fp_instr_of fset is the byte dbet (within the instruction stream of the frame instructions) of this
operation. lIstarts at O for a gen frame descriptor.

2.3.5 Frame Regtable: DWARF 2

This interface is adequate foMARF2 but not for BVARF3. A separate interface usable foMBRF3
and for DNARF2 is described belo

The Dwar f _Regt abl e type is used to contain thegisterrestore information for all registers at aayi
PC walue. Normallyused by debuggers.

/* DW_REG_TABLE_SIZE must reflect the number of registers
*(DW_FRAME_LAST_REG_NUM) as defined in dwarf.h

*

#define DW_REG_ABLE_SIZE <fill in size here, 66 for MIPS/IRIX>
typedef struct {

struct {
Dwar f _Smal | dw of fset _rel evant;
Dwar f _Hal f dw_r eghum
Dwar f _Addr dw of f set;

} rul es[DW REG TABLE Sl ZE] ;
} Dwarf _Regtabl e;

The array is indeed by regster number The field values for each indere described ne. For clarity we
describe the field values for indeules[M] (M being ag legd array element index).

dw of fset _rel evant is non-zero to indicate théw _of f set field is meaningful. If zero then the
dw_of f set is zero and should be ignored.

dw_r egnum is the register number applicabléf. dw of f set _rel evant is zero, then this is the
register number of the gister containing the value for register M. dw_of f set _r el evant is non-
zero, then this is the gisster number of the register to use as a base (M maybe-FRAME_CFA_COL,
for example) and thdw_of f set vaue applies. The value of register M is therefore the valuegidtesr
dw_regnum

dw_of f set should be ignored dlw_of f set _rel evant is zero. If dw_of f set _rel evant is non-
zero, then the consumer code should add the value to the value dfiserdev r egnumto produce the
value.

rev 1.85, 27 Newember 2009 -7-

2.3.6 Frame Operation Codes: DWARF 3 (and DWARF2)

This interface is adequate foMARF3 and for DVARF2. Itis newv in libdwarf in April 2006. The
DWARF2 Dwar f _Franme_Qp3 type is used to contain the data of a single instruction of an instruction-
sequence of le-level information from the section containing frame informatidthis is ordinarily used

by Internal-le#el Consumers trying to printverything in detail.

typedef struct {

Dwar f _Smal | fp_base_op;
Dwar f _Smal | f p_ext ended_op;
Dwar f _Hal f fp_register;

/* Val ue may be signed, depends on op.

Any applicable data_alignnment_factor has

not been applied, this is the raw offset. */
Dwarf _Unsigned fp_offset _or_block |en;
Dwar f _Smal | *f p_expr_bl ock;

Dwarf O f fp_instr_offset;
} Dwarf_ Frane_Op3;

fp_base _op is the 2-bit basic op codef p_extended_op is the 6-bit extended opcode (if
f p_base_op indicated there was an extended op code) and is zero otherwise.

fp_register is ary (or the first) register value as defined in tBal | Frane Instruction
Encodi ngs figure in thedwar f document. Ifhot used with the Op itis 0.

fp_offset or_ bl ock | en is the address, delta, offset, or second register as defined Cakhe
Frame Instruction Encodi ngs figure in thedwar f document. Or (depending on the op, it may
be the length of the davf-expression block pointed to Byp_expr _bl ock. If this is anaddr ess then
the value should be cast f®war f _Addr) before being usedln ary implementation this field *must*
be as large as the ¢gar of Dwarf_Signed and Dwarf_Addr for this to work propeifynot used with the
opitis 0.

fp_expr_bl ock (if applicable to the op) points to a drfrexpression block which is
fp_offset or bl ock | en bytes long.

fp_instr_of fset is the byte dbet (within the instruction stream of the frame instructions) of this
operation. lIsstarts at O for a gen frame descriptor.

2.3.7 Frame Regtable: DWARF 3

This interface is adequate foMARF3 and for BVARF2. Itis newv in libdwarf as of April 2006.The
Dwar f _Regt abl e3 type is used to contain thegisterrestore information for all registers at aayi PC
value. Normallyused by debuggers.

rev 1.85, 27 Newember 2009 -8-

typedef struct Dwarf_Regtable Entry3 s {

Dwar f _Smal | dw of fset _rel evant;
Dwar f _Smal | dw val ue_type;
Dwar f _Hal f dw_r egnum

Dwar f _Unsi gned dw of fset _or_ bl ock | en;
Dwarf Ptr dw_bl ock_ptr;

} Dwar f _Regt abl e_Entry3;

typedef struct Dwarf_Regtabl e3_s {
struct Dwarf_Regtable Entry3_s rt3 _cfa rule;

Dwar f _Hal f rt3_reg_table_size;
struct Dwarf_Regtable Entry3_ s * rt3_rules;
} Dwarf_Regtabl e3;

The array is indeed by regster number The field values for each ind@re described n¢. For clarity we
describe the field values for inderules]M] (M being ay legd array element inde.
(DW_FRAME_CHA_COL3 DW_FRAME_SAME_\AL, DW_FRAME_UNDEFINED_MAL are not lgd
array indees, nor is ap index < 0 or > it3_rey_table_size); The caller of routines using this struct must
create data space for rt3gréable_size entries of struct Brvf Regtable Entry3_s and arrange that
rt3_rules points to that space and that rt3_reg_table_size is set corfidatlycaller need not (but may)
initialize the contents of the rt3 acfrule or the rt3_rules arrayrhe following applies to each rt3_rules rule
M:

dw_regnum is the rgister number applicable. If dw_regnum is
DW_FRAME_UNDEFINED ML, then the register | has undefinedlve. Ifdw_r egnumis
DW_FRAME_SAME_VAL, then the register | has the same value as in the previous frame.

If dw_r egnhumis neither of these two, then the following apply:

dw_val ue_t ype determines the meaning of the othetds. Itis one of W _EXPR_OFFSET
(0), DW_EXPR_\AL_OFFSET(1), DW_EXPR_EXPRESSION(2) or
DW_EXPR_VAL_EXPRESSION(3).

If dw_val ue_t ype is DW_EXPR_OFFSET (0) then this is as ilVBRF2 and the dfet(N)
rule orthe register(R) rule of the\WARF3 and DVARF2 document applies. The value is either:
If dw_of f set _r el evant is non-zero, thedw_r egnumis efectively ignored ut
must be identical to W_FRAME_CFA_COL3 and thedw of f set value applies.
The value of rgister M is therefore the value of Eplus the value oflw_of f set .
The result of the calculation is the address in memory where the value of register M
resides. Thiss the offset(N) rule of the WARF2 and MVARF3 documents.

dw_of f set _rel evant is zero it indicates théw_of f set field is not meaningful.
The value of rgister M is the value currently in gister dw_r egnum (the \alue

DW_FRAME_CF_COL3 must not appeaonly real rgisters). Thids the rgister(R)

rule of the DWVARF3 spec.

If dw_val ue_type is DW_EXPR_OFFSET (1) then this is the thed wfiset(N) rule of the
DWARF3 spec applies. The calculation is identical to that W BXPR_OFFSET (0) but the
value is interpreted as the value ofjister M (rather than the address where registervlue is
stored).

If dw_val ue_t ype is DW_EXPR_EXPRESSION (2) then this is the thpression(E) rule of
the DWVARF3 document.

dw_of f set _or _bl ock_I| en is the length in bytes of the in-memory blopkinted
at by dw_bl ock_ptr. dw bl ock_ptr is a DNARF epression. Esgluate that

rev 1.85, 27 Newember 2009 -9-

-10 -

expression and the result is the address where the previous value of register M is found.
If dw value_ type is DW_EXPR_\AL _EXPRESSION (3) then this is the the
val_expression(E) rule of the\ARF3 spec.

dw_of f set _or _bl ock_I| en is the length in bytes of the in-memory blopkinted
at by dw_bl ock_ptr. dw bl ock_ptr is a DNARF epression. Esgluate that
expression and the result is the previous value of register M.
The rulert 3_cfa_rul e is the current value of the CFA. It is interpreted exactlg bRy
register M rule (as described just aBp except that dw_regnum cannot be
CW_FRAME_CR_REG3 or DV_FRAME_UNDEFINED_M\AL or DW_FRAME_SAME_VAL
but must be a real register number.

2.3.8 Macro Details Record
TheDwar f _Macr o_Det ai | s type gives information about a single entry in the .debug.macinfo section.

struct Dwarf_Macro Details_s {
Dwarf O f dnd_of f set;
Dwarf _Smal|l dnd_type;
Dwar f _Si gned dnd_I i neno;
Dwar f _Si gned dnd_fil ei ndex;
char * dnd_nuacr o;
b
typedef struct Dwarf_Macro_Details_s Dwarf_Macro_Details;

dnd_of f set is the byte offset, within the .debug_macinfo section, of this macro information.

dnd_t ype is the type code of this macro info entry (or 0, the type code indicating that this is the end of
macro information entries for a compilation unifee DW MACI NFO defi ne, ec in the DNARF
document.

dnd_| i neno is the line number where this entry was found, or 0 if there is no applicable line number.

dnd_fil ei ndex is the file ind& of the file involved. Thisis only guaranteed meaningful on a
DW MACI NFO start _fil e dnd type. Setto -1 if unknown (see the functional interface for more
details).

dnd_nacr o is the applicable stringFor a DW MACI NFO_def i ne this is the macro name andlue.
For a DW MACI NFO_undef , or this is the macro nameror a DW MACI NFO vendor _ext this is the
vendor-defined stringalue. or otherdnd_t ypes this is 0.

2.4 Opaque Types

The opaque types declaredlibdwarf.h are used as descriptors for querieaiagt DNVARF information

stored in various debugging sectiorigach time an instance of an opaque type is returned as a result of a
libdwarf operation Dwar f _Debug excepted), it should be freed, usidgar f _deal | oc() when it is

no longer of use (read the following documentation for details, as in at least one case there is a special
routine provided for deallocation anddwarf _deall oc() is not directly called: see

dwarf _srclines()). Somefunctions return a number of instances of an opaque type in a block, by
means of a pointer to the block and a count of the number of opaque descriptors in the block: see the
function description for deallocation rules for such functions. The list of opaque types defined in
libdwarf.h that are pertinent to the Consumer Librand their intended use is described belo

typedef struct Dwarf_Debug_s* Dwarf_Debug;

rev 1.85, 27 Newember 2009 -10-

-11 -

An instance of thé&war f _Debug type is created as a result of a successful calivar f _init (), or

dwarf _elf_init(),andis used as a descriptor for subsequent access td ntbdar f functions on

that object. The storage pointed to by this descriptor should be not be freed, using the
dwar f _deal | oc() function. Insteadree it withdwar f _fi ni sh().

typedef struct Dwarf_Die_s* Dwarf_Die;

An instance of ebwar f _Di e type is returned from a successful call to thwar f _si bl i ngof (),
dwarf _chil d, ordwarf _of fdi e() function, and is used as a descriptor for queries about information
related to that DIE.The storage pointed to by this descriptor should be freed, damgf _deal | oc()

with the allocation typ®W DLA_ DI E when no longer needed.

typedef struct Dwarf_Line_s* Dwarf_Line;

Instances ofDwar f _Li ne type are returned from a successful call to tvearf _srclines()

function, and are used as descriptors for queries about source lines. The storage pointed to by these
descriptors should be individually freed, usirdwarf_deal | oc() with the allocation type

DW DLA LI NEwhen no longer needed.

typedef struct Dwarf_d obal _s* Dwarf_d obal;

Instances oDwar f _G obal type are returned from a successful call todhar f _get _gl obal s()
function, and are used as descriptors for queries about global names (pubnames).

typedef struct Dwarf_Weak s* Dwarf_Weak;

Instances of Dwarf _\Weak type are returned from a successful call to the SGI-specif
dwar f _get weaks() function, and are used as descriptors for queries about weak names. The storage
pointed to by these descriptors should be individually freed, udimar f _deal | oc() with the
allocation type DW DLA WEAK CONTEXT (or DW DLA WEAK, an dder name, supported for
compatibility) when no longer needed.

typedef struct Dwarf_Func_s* Dwarf_Func;

Instances of Dwarf _Func type are returned from a successful call to the SGI-specif
dwar f _get funcs() function, and are used as descriptors for queries about static function names.

typedef struct Dwarf_Type_s* Dwarf_Type;

Instances of Dwarf_Type type are returned from a successful call to the SGI-specif
dwar f _get _types() function, and are used as descriptors for queries about user defined types.

typedef struct Dwarf_Var_s* Dwarf_Var;

Instances of Dwarf _Var type are returned from a successful call to the SGlI-specif
dwar f _get var s() function, and are used as descriptors for queries about static variables.

typedef struct Dwarf_Error_s* Dwarf_Error;

This descriptor points to a structure that provides detailed information about errors detédtod\ogr f .
Users typically provide a location fdri bdwar f to store this descriptor for the user to obtain more
information about the error The storage pointed to by this descriptor should be freed, using
dwar f _deal | oc() with the allocation typ®wW DLA ERRCRwhen no longer needed.

rev 1.85, 27 Newember 2009 -11-

-12 -

typedef struct Dwarf_Attribute_s* Dwarf_Attribute;

Instances obwar f _At t ri but e type are returned from a successful call todtarf _attrlist(),
ordwarf_attr () functions, and are used as descriptors for queries about attrédués.v Thestorage
pointed to by this descriptor should be individually freed, udiwgr f _deal | oc() with the allocation
typeDW DLA_ATTRwhen no longer needed.

typedef struct Dwarf_Abbrev_s* Dwarf_Abbrev;

An instance of @war f _Abbr ev type is returned from a successful calldwar f _get abbrev(),
and is used as a descriptor for queries about wibtions in the .dalg_abbre section. Thestorage
pointed to by this descriptor should be freed, usitvgar f _deal | oc() with the allocation type
DW DLA ABBREV when no longer needed.

typedef struct Dwarf_Fde_s* Dwarf_Fde;

Instances oDwar f _Fde type are returned from a successful call todinar f _get _fde_list(),
dwarf _get _fde for_die(),ordwarf_get fde_at_ pc() functions, and are used as descriptors
for queries about frames descriptors.

typedef struct Dwarf_Cie_s* Dwarf_Cie;

Instances oDwar f _Ci e type are returned from a successful call to derf_get _fde_list()
function, and are used as descriptors for queries about information that is commearaidrsenes.

typedef struct Dwarf_Arange_s* Dwarf_Arange;

Instances oDwar f _Ar ange type are returned from successful calls todkar f _get _ar anges(),
ordwar f _get _arange() functions, and are used as descriptors for queries about address fHmges.
storage pointed to by this descriptor should be individually freed, usiagf deal | oc() with the
allocation typeDW DLA ARANGE when no longer needed.

3. Error Handling

The method for detection and disposition of error conditions that arise during accessugdgirtgb
information vialibdwarf is consistent across dibdwarf functions that are capable of producing an error
This section describes the method usetittmwarf in notifying client programs of error conditions.

Most functions withinlibdwarf accept as an argument a pointer tbwar f _Er r or descriptor where a
Dwar f _Error descriptor is stored if an error is detected by the functiRoutines in the client program
that provide this argument can query Bwvear f _Er r or descriptor to determine the nature of the error and
perform appropriate processing.

A client program can also specify a function to baked upon detection of an error at the time the library

is initialized (seedwar f _i ni t ()). Whenalibdwarf routine detects an errahis function is called with

two alguments: a code indicating the nature of the error and a pointer provided by the client at initialization
(agpin seedwar f _i nit()). Thispointer argument can be used to relay information between the error
handler and other routines of the client prograiclient program can specify or change both the error
handling function and the pointer argument after initialization uslmgrf set errhand() and

dwarf _seterrarg().

In the case wherBbdwarf functions are not provided a pointer tdaar f _Er r or descriptoy and no

error handling function was provided at initializatidipdwarf functions terminate x@cution by calling
abort (3C).

rev 1.85, 27 Neember 2009 -12 -

-13 -

The following lists the processing steps taken upon detection of an error:

1. Checkthe error argument; if not aNULL pointer dlocate and initialize ebwar f _Err or
descriptor with information describing the errptace this descriptor in the area pointed to by
error, and return a value indicating an error condition.

2. If anerrhand amgument was provided tdwar f _i ni t () at initialization, caller r hand()
passing it the error descriptor and the value of #werarg amgument provided to
dwarf _init(). If the error handling function returns, return a value indicating an error
condition.

3. Terminate programxecution by callingabort (3C) .

In all cases, it is clear from thelue returned from a function that an error occurredxatiging the
function, since DW_DLV_ERROR is returned.

As can be seen from the aleogeps, the client program can pide an error handler at initialization, and
still provide aner r or argument tolibdwarf functions when it is not desired toveathe error handler
invoked.

If a libdwarf function is called with imalid arguments, the behavior is unigbefd. In particular,
supplying aNULL pointer to al i bdwar f function (except where explicitly permitted), or pointers to
invalid addresses or uninitialized data causes undefined behavior; the retum im such cases is
undefned, and the function may fail tovioke the caller supplied error handler or to return a meaningful
error number Implementations also may aboxeeution for such cases.

3.1 Returned valuesin the functional interface

Values returned by i bdwar f functions to indicate success and errors are enumerated in Figlife?2.
DW DLV_NO ENTRY case is useful for functions need to indicate that while thasen® data to return
there was no error eithefor example,dwar f _si bl i ngof () may returnDW DLV_NO_ENTRY to
indicate that that there was no sibling to return.

SYMBOLIC NAME VALUE MEANING
DW_DLV_ERROR 1 Error
DW_DLV_OK 0 Successful call
DW_DLV_NO_ENTRY -1 No applicable value

Figure 2. Error Indications
Each function in the interface that returns a value returns one of the integers invihégaive.

If DW DLV_ERRORIs returned and a pointer tdDwar f _Er r or pointer is passed to the function, then a
Dwarf_Error handle is returned through the poinlier ather pointer value in the intexée returns aatue.
After the Dwar f _Error is no longer of interest, a
dwar f _deal | oc(dbg, dw _err, DW DLA ERROR) on the error pointer is appropriate to freey an
space used by the error information.

If DW DLV_NO_ENTRY is returned no pointer value in the interface returns a value.

If DW DLV_(Kis returned, th&war f _Err or pointet if supplied, is not touched, butyanther values to

be returned through pointers are returned. In this case calls (depending racthierction returning the
error) todwar f _deal | oc() may be appropriate once the particular pointer returned is no longer of
interest.

Pointers passed to allovalues to be returned through them are uniformly the last pointers in each
argument list.

All the interface functions are defined from the point ofwief the writer-of-the-library (as is traditional

rev 1.85, 27 Newember 2009 -13-

-14 -

for UN*X library documentation), not from the point of wieof the user of the libraryThe caller might
code:

Dwarf_Line |ine;

Dwarf _Signed ret | off;

Dwarf _Error err;

int retval = dwarf_lineoff(line, & et _|off, &err);

for the function defined as

int dwarf_lineoff(Dwarf_Line Iine, Dnarf_Signed *return_Ilineoff,
Dwarf _Error* err);

and this document refers to the function as returning @ahee\through *err or *return_linebbr uses the
phrase "returns in the location pointed to by err". Sometimes other similar phrases are used.

4. Memory M anagement

Several of the functions that comprisdodwarf return pointers (opaque descriptors) to structures that ha
been dynamically allocated by the libraryo ad in the management of dynamic memahe function
dwar f _deal | oc() is provided to free storage allocated as a result of a callibovearf function. This
section describes the strategy that should be taken by a client program in managing dynamic storage.

4.1 Read-only Properties

All pointers (opaque descriptors) returned by or as a resultibfisarf Consumer Library call should be
assumed to point to read-only memofihe results are undeéd forlibdwarf clients that attempt to write
to a region pointed to by a value returned tiypdwarf Consumer Library call.

4.2 Storage Deallocation

See the section "Returned values in the functional adetf abwe, for the general rules where calls to
dwar f _deal | oc() is appropriate.

In some cases the pointers returned bydwarf call are pointers to data which is not freeable. The library
knows from the allocation type praled to it whether the space is freeable or not and will not free
inappropriately whemdwar f _deal | oc() is called. So it is vital thalwar f _deal | oc() be called
with the proper allocation type.

For most storage allocated byibdwarf, the client can free the storage for reuse by calling
dwar f _deal | oc(), providing it with theDwar f _Debug descriptor specifying the object for which the
storage was allocated, a pointer to the area to be free-ed, and ateidtvaif specifies what the pointer
points to (the allocation type)For example, to free éwarf _Di e di e belonging the the object
represented byDwar f _Debug dbg, dlocated by a call todwarf _si blingof (), the call to
dwar f _deal | oc() would be:

dwar f _deal | oc(dbg, die, DWDLA DIE);

To free storage allocated in the form of a list of pointers (opaque descriptors), each member of the list
should be deallocated, folled by deallocation of the actual list itself. The following code fragment uses
an invocation ofdwarf _attrlist() as an example to illustrate a technique that can be used to free
storage from anlibdwarf routine that returns a list:

rev 1.85, 27 Newember 2009 -14 -

-15-

Dwar f _Unsi gned atcnt;
Dwarf Attribute *atlist;
int errv;

errv = dwarf_attrlist(somedie, &atlist,&tcnt, &error);
if (errv == DWDLV_OK) {

for (i =0; i <atcnt; ++i) {
[* use atlist[i] */
dwarf _deal | oc(dbg, atlist[i], DWDLA ATTR);

}
dwarf _deal | oc(dbg, atlist, DWDLA LIST);

The Dwar f _Debug returned fromdwarf _init() ordwarf_elf_init() cannot be freed using
dwar f _deal | oc(). The functiondwar f _fi ni sh() will deallocate all dynamic storage associated
with an instance of Bwar f _Debug type. Inparticular it will deallocate all dynamically allocated space
associated with thBwar f _Debug descriptoyand finally male the descriptor ialid.

An Dwar f _Error returned fromdwarf _init() ordwarf_elf _init() in case of a failure cannot
be freed usinglwar f _deal | oc() . The only way to free thédwar f _Err or from either of those calls
is to usefree(3) directly. Every Dwarf Error must be freed bylwar f _deal | oc() except those

returned bydwar f _init () ordwarf _elf_init().

The codes that identify the storage pointed to in caliver f _deal | oc() are described in figure 3.

rev 1.85, 27 Newember 2009 -15-

-16 -

IDENTIFIER USED TO FREE
DW_DLA_STRING char*

DW_DLA LOC Dwarf_Loc
DW_DLA_LOCDESC Dvarf_Locdesc
DW_DLA_ELLIST Dwarf_Ellist (not used)
DW_DLA_BOUNDS Dwarf_Bounds (not used)
DW_DLA_BLOCK Dwarf_Block
DW_DLA_DEBUG Dwarf_Debug (do not use)
DW_DLA_DIE Dwarf_Die
DW_DLA_LINE Dwarf_Line
DW_DLA_ATTR Dwarf_Attribute
DW_DLA_TYPE Dwarf_Type (notused)
DW_DLA_SUBSCR Dvarf_Subscr (not used)
DW_DLA_GLOBAL_CONTEXT Dwarf_Global
DW_DLA_ERROR Dwarf_Error
DW_DLA_LIST alist of opaque descriptors
DW_DLA_LINEBUF Dwarf_Line* (not used)
DW_DLA_ARANGE Dwarf_Arange
DW_DLA_ABBREV Dwarf_Abbrev
DW_DLA_FRAME_OP Dvarf_Frame_Op
DW_DLA_CIE Dwarf_Cie

DW_DLA_FDE Dwarf_Fde
DW_DLA_LOC_BLOCK Dwarf_Loc Block
DW_DLA_ FRAME_BLOCK Dwarf_Frame Block (not used
DW_DLA_FUNC_CONTEXT Dvarf_Func
DW_DLA_TYPENAME_CONTEXT Dwarf_Type
DW_DLA_VAR_CONTEXT Dwarf_Var
DW_DLA_WEAK_CONTEXT Dwarf_Weak
DW_DLA_PUBTYPES_CONTEXT Dwrf_Pubtype

Figure 3. Allocation/Deallocation Identifiers

5. Functional Interface

This section describes the functionsitable in thelibdwarf library. Each function description includes its
definition, followed by one or more paragraph describing the funstimperation.

The following sections describe these functions.

5.1 Initialization Operations

These functions are concerned with preparing an objecfdr subsequent access by the functions in
libdwarf and with releasing allocated resources when access is complete.

5.1.1 dwarf _init()

rev 1.85, 27 Neember 2009 -16 -

-17 -

int dwarf _init(
int fd,
Dwar f _Unsi gned access,
Dwar f _Handl er errhand,
Dwarf _Ptr errarg,
Dwar f _Debug * dbg,
Dwarf _Error *error)

When it returnsDW DLV_OK, the functiondwar f _i ni t () returns throughdbg a Dwar f _Debug
descriptor that represents a handle for accessing debugging records associated with tleedeserigdtor

fd. DWDLV_NO ENTRY is returned if the object does not contailV®RF debugging information.
DW DLV_ERRORis returned if an error occurredheaccess argument indicates what access is\atd

for the section.The DW DLC_READ parameter is valid for read access (only read access is defined or
discussed in this documentlhe err hand argument is a pointer to a function that will besdked
whenever an aror is detected as a result ofibdwarf operation. Theer r ar g agument is passed as an
argument to theer r hand function. Thefile descriptor associated with thd argument must refer to an
ordinary file (i.e. not a pipe, socket, device, /proc en&y.), be opened with the at least as much
permission as specified by tlaecess argument, and cannot be closed or used as an argumery to an
system calls by the client until aftdwar f _f i ni sh() is called. The seek position of thkefassociated
with f d is undefined upon return dfvar f _i nit ().

With SGI IRIX, by default it is allowed that the app ose() fd immediately after calling
dwar f _i ni t (), but that is nota portable approach (that it works is an accidental side effect oftte f
that SGI IRIX use€ELF_C READ MVAP in its hidden internal call tel f _begi n()). The portable
approach is to consider thad must be left open till after the correspondingadiwfinish() call has
returned.

Sincedwar f _i ni t () uses the same error handling processing as ttidwarf functions (seeerror
Handling above), client programs will generally supply @nr or parameter to bypass the delt actions
during initialization unless the default actions are appropriate.

5.1.2 dwarf_df_init()

int dwarf_elf _init(
EIf * elf file_pointer,
Dwar f _Unsi gned access,
Dwar f _Handl er errhand,
Dwarf_Ptr errarg,
Dwar f _Debug * dbg,
Dwar f _Error *error)

The functiondwar f _el f _i ni t () is identical todwar f i nit () except that an opeBl f * pointer

is passed instead of @efdescriptor In systems supportingLF object files this may be more space or
time-eficient than usinglwar f _i nit (). The client is allowed to use thg f * pointer for its avn
purposes without restriction during the time twar f _Debug is open, gcept that the client should not
el f _end() the pointer till afterdwar f _fi ni shis called.

5.1.3 dwarf_get_elf()

rev 1.85, 27 Newember 2009 -17 -

-18 -

int dwarf_get_el f(
Dwar f _Debug dbg,
Elf ** el f,
Dwarf _Error *error)

When it returnW DLV_CK, the functiondwar f _get _el f () returns through the pointet f theEl f
* handle used to access the object represented byowhef Debug descriptordbg. It returns
DW DLV_ERROR 0N error.

Becausa nt dwarf _i nit () opens an Elf descriptor on its fd addar f _fi ni sh() does not close
that descriptgran gp should uselwar f _get _el f and should calel f _end with the pointer returned
through theEl f ** handle created biynt dwarf _init().

This function is not meaningful for a system that does not use the EIlf format for objects.

5.1.4 dwarf_finish()

int dwarf _finish(
Dwar f _Debug dbg,
Dwarf Error *error)

The functiondwar f _fi ni sh() releases alLibdwarf internal resources associated with the descriptor
dbg, and invalidatesdbg. It returnsDW DLV_ERRORf there is an error during the finishing operatidh.
returnsDW DLV _OK for a successful operation.

Becausa nt dwarf i nit() opens an EIf descriptor on its fd addar f _fi ni sh() does not close
that descriptgran gp should uselwar f _get el f and should calel f _end with the pointer returned
through theel f ** handle created hiynt dwarf _init().

5.1.5 dwarf_set_stringcheck()

int dwarf_set_stringcheck(
i nt stringcheck)

The functioni nt dwarf_set _stringcheck() sets a global flag and returns theviwes value of
the global flag.

If the stringcheck global flag is zero (the aeit) libdwarf does not do string length validity checks. If the
stringcheck global flag is non-zero libdv does do string length validity checks (the checks de slo
libdwarf down).

The global flag is really just 8 bits long, upperbits are not noticed or recorded.

5.1.6 dwarf_set_reloc_application()

int dwarf_set _reloc_application(
int apply)

The functioni nt dwarf_set rel oc_application() sets a global flag and returns thevioes
value of the global flag.

rev 1.85, 27 Newember 2009 -18 -

-19 -

If the reloc_application global flag is non-zero (the default) then the applicable .rela section &ists)e e
will be processed and applied toydDWARF section when it is read in. If the reloc_application global flag
is zero no such relocation-application is attempted.

Not all machine types (elf header e_machine) or all relocations are supported, but thew velyctgion
types apply to BWARF debug sections.

The global flag is really just 8 bits long, upperbits are not noticed or recorded.

It seems unlikely anyone will need to call this function.

5.2 Debugging Information Entry Delivery Operations

These functions are concerned with accessing debugging information entries.

5.2.1 Debugging Information Entry Debugger Delivery Operations

5.2.2 dwarf_next_cu_header_b()

int dwarf_next cu_header b(
Dwar f _debug dbg,
Dwar f _Unsi gned *cu_header | engt h,

Dwar f _Hal f *ver si on_stanp,
Dwar f _Unsi gned *abbrev_offset,
Dwar f _Hal f *address_si ze,
Dwar f _Hal f *of f set _si ze,
Dwar f _Hal f *ext ensi on_si ze,

Dwar f _Unsi gned *next _cu_header,
Dwar f _Error *error);

The functiondwar f _next cu_header b() returnsDW DLV_ERRORf it fails, andDW DLV_Kif it
succeeds.

If it succeeds* next _cu_header is set to the offset in the .debug_info section of thé cempilation-

unit header if it succeed$n reading the last compilation-unit header in the .debug_info section it contains
the size of the .debug_info section. The next calldiwarf next cu_header b() returns

DW DLV_NO _ENTRY without reading a compilation-unit or settifignext _cu_header. Subsequent

calls todwar f _next cu_header () repeat the cycle by reading the first compilation-unit and so on.

The other values returned through pointers are #iaesg in the compilation-unit headelf any of
cu_header | ength, versi on_st anp, abbrev_of f set, address_si ze, of f set _si ze, or
ext ensi on_si ze, is NULL, the argument is ignored (meaning it is not an error toigeoa NULL
pointer for ag or dl of these arguments).

cu_header _| engt h returns the length in bytes of the compilation unit header.

ver si on_st anp returns the section version, which would be (for .debug_info) 2 WARF2, 3 for
DWARF4, or 4 for DVARF4.

abbr ev_of f set returns the .debug_abbrsection offset of the abbreviations for this compilation unit.
addr ess_si ze returns the size of an address in this compilation unit. Which is usually 4 or 8.

of f set _si ze returns the size in bytes of an offset for the compilation unit. Tisetdfize is 4 for 32bit

rev 1.85, 27 Newember 2009 -19-

-20 -

dwarf and 8 for 64bit darf. Thisis the ofset size in dwarf data, not the address size insidexdoaitable
code. Theoffset size can be 4ven if embedded in a 64bit elf file (which is normal for 64bit elf), and can
be 8 @en in a 2bit elf file (which probably will neer be £en in practice).

Theext ensi on_si ze pointer is only releant if theof f set _si ze pointer returns 8. The value is not
normally useful bt is returned through the pointer for completeness. The pa@nteensi on_si ze

returns 0O if the CU is MIPS/IRIX non-standard 64bitadfv(MIPS/IRIX 64bit dwarf was created years
before DNARF3 deined 64bit dwarf) and returns 4 if the dwarf uses the standard 64bit extension (the 4 is
the size in bytes of the @ffff i n the initial length field which indicates the foMing 8 bytes in the
.debug_info section are the real length). See WARF3 or DNVARF4 standard, section 7.4.

5.2.3 dwarf_next_cu_header()

The following is the older form, missing tloé f set _si ze, andext ensi on_si ze fields. This is &pt
for compatibility All code using this should be changed todwsar f _next cu_header _b()

i nt dwarf_next cu_header (
Dwar f _debug dbg,
Dwar f _Unsi gned *cu_header | engt h,

Dwar f _Hal f *ver si on_stanp,
Dwar f _Unsi gned *abbrev_offset,
Dwar f _Hal f *addr ess_si ze,

Dwar f _Unsi gned *next _cu_header,
Dwar f _Error *error);

5.2.4 dwarf_siblingof()

i nt dwarf_siblingof(
Dwar f _Debug dbg,
Dwarf_Di e die,

Dwarf _Die *return_sib,
Dwarf _Error *error)

The functiondwar f _si bl i ngof () returnsDW DLV_ERROR and sets ther r or pointer on error If
there is no sibling it returnBW DLV_NO_ENTRY. When it succeedsjwar f _si bl i ngof () returns
DW DLV_OK and setdr et urn_si b to theDwar f _Di e descriptor of the sibling afi e.

If di e is NULL, the Dwar f _Di e descriptor of the first die in the compilation-unit is returned. This die
has theDW TAG conpi |l e_unit,DW TAG partial _unit,or DW TAG type_unit tag.

Dwarf Die return_sib = 0;
Dwarf Error error = 0;
int res;
/* in_die mght be NULL or a vaid Dnarf_Die */
res = dwarf_siblingof(dbg,in_die, &eturn_sib, &error);
if (res == DWDLV_OK) {
/* Use return_sib here. */
dwar f _deal | oc(dbg, return_sib, DWDLA D E);
/* return_sib is no longer usable for anything, we
ensure we do not use it accidentally with: */
return_sib = 0;

rev 1.85, 27 Neember 2009 -20 -

-21-

5.2.5 dwarf_child()

int dwarf_chil d(
Dwarf _Die die,
Dwarf _Die *return_Kid,
Dwarf Error *error)

The functiondwar f _chi | d() returnsDW DLV_ERRCR and sets ther r or die on error If there is no
child it returnsDW DLV_NO _ENTRY. When it succeedgjwarf _chi | d() returnsDW DLV_OK and
sets *return_kid to the Dwarf_Di e descriptor of the ifst child of die. The function
dwar f _si bl i ngof () can be used with the return value abfar f _chil d() to access the other
children ofdi e.

Dwnarf _Die return_kid = O;
Dwarf _Error error = 0;
int res;

res = dwarf_child(dbg,in _die, & eturn_kid, &error);
if (res == DWDLV_OK) {
/* Use return_kid here. */
dwarf _deal | oc(dbg, return_kid, DWDLA D E);
/* return_die is no longer usable for anything, we
ensure we do not use it accidentally with: */
return_kid = 0;

5.2.6 dwarf_offdie()

int dwarf_offdie(
Dwar f _Debug dbg,
Dwarf_ O f offset,
Dwarf _Die *return_die,
Dwarf _Error *error)

The functiondwar f _of f di e() returnsDW DLV_ERROR and sets therr or die on error When it
succeedsdwar f _of f di e() returnsDW DLV_COK and sets* r et ur n_di e to the theDwarf_Di e
descriptor of the delyging information entry aif f set in the section containing debugging information
entries i.e the .debug_info sectioA return of DW DLV_NO _ENTRY means that thef f set in the
section is of a byte containing all 0 bits, indicating that there is no abbreviation code. Meanidg this ’
offset’ is not the offset of a real die, but is instead &ebbf a null die, a padding die, or of some random
zero byte: this should not be returned in normal usds the uses responsibility to ma& wure that

of f set is the start of aalid debugging information entryThe result of passing it anviid offset could

be chaos.

rev 1.85, 27 Newember 2009 -21-

-22-

Dwarf Error error = 0;
Dwarf Die return_die = 0;
int res;

res = dwarf_offdi e(dbg, die_offset, & eturn_die, &error);
if (res == DWDLV_OK) {
/* Use return_die here. */
dwar f _deal | oc(dbg, return_die, DWDLA D E);
/* return_die is no longer usable for anything, we
ensure we do not use it accidentally with: */
return_die = 0;

5.3 Debugging Information Entry Query Operations

These queries return specific information aboutudgbng information entries or a descriptor that can be
used on subsequent queries whemerga Dwar f _Di e descriptor Note that some operations are specif

to debugging information entries that are representedwaaf Di e descriptor of a specific typeror
example, not all debugging information entries contain an attribute having a name, so consexjahtly
to dwar f _di ename() using aDwar f _Di e descriptor that does not\Vea rmme attribute will return
DW DLV_NO ENTRY. This is not an errgii.e. calling a function that needs a specific attribute is not an
error for a die that does not contain that specific attribute.

There are s@ral methods that can be used to obtain the value of an attributevienaligi:

1. Calldwarf _hasattr() to determine if the debugging information entry has the attilof
interest prior to issuing the query for information about the attribute.

2. Supplyanerror amgument, and check itsalue after the call to a query indicates an unsuccessful
return, to determine the nature of the problérheer r or argument will indicate whether an error
occurred, or the specific attribute needed was missing in that die.

3. Arrange to hare a1 eror handling function iwmoked upon detection of an error (see
dwarf _init()).

4. Calldwarf _attrli st () and iterate through the returned list of attributes, dealing with each one
as appropriate.

5.3.1 dwarf_tag()

int dwarf_tag(
Dwarf_Die die,
Dwarf _Hal f *tagval,
Dwarf _Error *error)

The functiondwar f _t ag() returns thdag of di e through the pointet agval if it succeeds.It returns
DW DLV_CXKif it succeeds. It returnSW DLV_ERRORoon error.

rev 1.85, 27 Neember 2009 -22-

-23-

5.3.2 dwarf_dieoffset()

int dwarf _di eof fset(
Dwarf _Die die,
Dwarf O f * return_offset,
Dwar f _Error *error)

When it succeeds, the functiondwarf di eoffset() returns DWDLV_OK and sets
*return_of fset to the position ofdi e in the section containing debugging information entries (the
return_of f set is a section-relate dfset). Inother words, it setset ur n_of f set to the offset of
the start of the debugging information entry describeddbg in the section containing dies i.e
.delug_info. ItreturnsDW DLV_ERROR 0N error.

5.3.3 dwarf_die CU_offset()

int dwarf_die_CU of fset(
Dwarf_Di e die,
Dwarf O f *return_offset,
Dwarf _Error *error)

The functiondwar f _di e_CU _of f set () is similar todwar f _di eof f set (), except that it puts the
offset of the DIE represented by timarf _Di e di e, from the start of the compilation-unit that it
belongs to rather than the start of .debug_infor(#teur n_of f set is a CU-relatre dfset).

5.3.4 dwarf CU_dieoffset_given_dig()

int dwarf_CU di eof fset given_die(
Dwarf _Di e given_die,
Dwarf O f *return_offset,
Dwar f _Error *error)

The functiondwar f _CU di eof fset gi ven_di e() is similar todwarf _di e CU of fset(),
except that it puts the global feét of the CU DIE wning gi ven_di e of .debug_info (the
return_of f set is a global section offset).

This is useful when processing a DIE tree and encountering an error or other surprise in a DIE, as the
return_of fset can be passed twwarf_of fdi e() to return a pointer to the CU die of the CU
owning thegi ven_di e passed tawar f _CU di eof f set _gi ven_di e() . The consumer carxgact
information from the CU die and tlgg ven_di e (in the normal way) and print it.

An example (ashippet) of code using this function follows. It assumes itimatdi e is a DIE that, for

some reason, you Y& cecided needs CU comteprinted (assumingri nt _di e_dat a does some
reasonable printing).

rev 1.85, 27 Neember 2009 -23-

-24 -

int res;
Dwarf_Off cudieof = 0;
Dwarf_Die cudie = 0;

print_die_data(dbg,in_die);
res = dwarf_CU_dieoffset wgn_die(in_die,&cudieoff,&error);
if(res = DW_DLV_OK) {
printf("FAIL: dwarf_CU_dieoffset_gien_die did not workO0);
exit(1);
}
res = dwarf_offdie(dbg,cudieoff,&cudie,&error);
if(res != DW_DLV_OK) {
printf("FAIL: dwarf_offdie did not workO0);
exit(1);
}
print_die_data(dbg,cudie);
dwarf_dealloc(dbg,cudie, DW_DLA_DIE);

5.3.5 dwarf_die CU_offset_range()

int dwarf_di e CU of fset_ range(
Dwarf _Die die,
Dwarf O f *cu_gl obal of fset,
Dwarf O f *cu_l ength,
Dwar f _Error *error)

The functiondwar f _di e_CU of f set _range() returns the offset of the mning of the CU and the
length of the CU. The &et and length are of the entire CU that this DIE is a part of. It is used by
dwarfdump (for @ample) to check the validity of fsets. Mostpplications will hae o reason to call this
function.

5.3.6 dwarf_diename()

i nt dwarf _di enanme(
Dwarf_Di e die,
char ** return_nane,
Dwarf _Error *error)

When it succeeds, the functidwar f _di enanme() returnsDW DLV_OK and setgr et ur n_nane to a
pointer to a null-terminated string of characters that represents the nameteatrfiloli e. It returns
DW DLV_NO ENTRY if di e does not hee a rmame attrilnte. It returnsDW DLV_ERROR if an error
occurred. Thestorage pointed to by a successful returdwir f _di ename() should be freed using the
allocation typeDW DLA_STRI NGwhen no longer of interest (sdear f _deal | oc()).

5.3.7 dwarf_die abbrev_code()

rev 1.85, 27 Neember 2009 -24 -

-25-

int dwarf_di e_abbrev_code(Dwarf_Die die,)

The function returns the abbreviation code of the DIBat is, it returns the abbreviation "index" into the
abbreviation table for the compilation unit of which the DIE is a pdtrcannot fail. No errors are possible.
The pointerdi e() must not be NULL.

5.3.8 dwarf_attrlist()

int dwarf_attrlist(
Dwarf _Die die,
Dwarf Attribute** attrbuf,
Dwarf _Signed *attrcount,
Dwar f _Error *error)

When it returndDW DLV_CK, the functiondwar f _attrli st () setsattrbuf to point to an array of
Dwar f _Attri but e descriptors corresponding to each of the atteb in die, and returns the number of
elements in the array througtt t r count. DW DLV_NO _ENTRY is returned if the count is zero (no
att r buf is allocated in this caseDW DLV_ERROCR is returned on errorOn a successful return from
dwarf _attrlist(), each of theDwarf Attri but e descriptors should be individually freed using
dwar f _deal | oc() with the allocation typ®W DLA ATTR, followed by free-ing the list pointed to by
*attrbuf usingdwarf_deal | oc() with the allocation typeDW DLA LI ST, when no longer of
interest (seewar f _deal | oc()).

Freeing the attrlist:

Dwar f _Unsi gned atcnt;
Dwarf Attribute *atlist;
int errv;

errv = dwarf_attrlist(sonedie, &atlist,&tcnt, &error);
if (errv == DWDLV_X) {

for (i =0; i < atcnt; ++i) {

/* use atlist[i] */

dwarf deal | oc(dbg, atlist[i], DWDLA ATTR);
}
dwarf deal | oc(dbg, atlist, DWDLA LIST);

}

5.3.9 dwarf_hasattr()

int dwarf_hasattr(
Dwarf_Di e die,
Dwarf Hal f attr,
Dwarf _Bool *return_bool,
Dwarf _Error *error)

When it succeeds, the functiolwar f _hasattr () returnsDW DLV_COK and sets r et ur n_bool to
non-zero if di e has the attributat t r andzero otherwise. Ifit fails, it returnsDW DLV _ERROR.

rev 1.85, 27 Newember 2009 -25-

-26 -

5.3.10 dwarf_attr()

int dwarf_attr(
Dwarf _Die die,
Dwarf Half attr,
Dwarf Attribute *return_attr,
Dwar f _Error *error)

When it returns DW DLV_OK, the function dwarf _attr() sets *return_attr to the
Dwarf _Attri but e descriptor ofdi e having the attrilmte at t r. It returnsDW DLV_NO_ENTRY if
attr is not contained idi e. It returnsDW DLV_ERRORf an error occurred.

5.3.11 dwarf_lowpc()

int dwarf_| owpc(
Dwarf_Die di e,
Dwar f _Addr * return_I| owpc,
Dwarf _Error * error)

The functiondwar f _| owpc() returnsDW DLV_OK and sets‘r et ur n_| owpc to the lav program
counter value associated with tthee descriptor ifdi e represents a debugging information entry with this
attribute. ItreturnsDW DLV_NO _ENTRY if di e does not hee this attritute. ItreturnsDW DLV_ERROR

if an error occurred.

5.3.12 dwarf_highpc()

i nt dwarf _hi ghpc(
Dwarf _Die die,
Dwarf _Addr * return_highpc,
Dwar f _Error *error)

The functiondwar f _hi ghpc() returnsDW DLV_OK and sets‘r et ur n_hi ghpc the high program
counter value associated with tthiee descriptor ifdi e represents a dalgging information entry with this
attribute. ItreturnsDW DLV_NO _ENTRY if di e does not hee tis attritute. ItreturnsDW DLV_ERROR
if an error occurred.

5.3.13 dwarf_bytesize()

Dwar f _Si gned dwarf _byt esi ze(

Dwarf_Die di e,
Dwarf _Unsigned *return_size,
Dwar f _Error *error)

When it succeedsiwar f _byt esi ze() returnsDW DLV_OK and sets r et ur n_si ze to the number
of bytes needed to contain an instance of the gggreebugging information entry representedibe. It
returnsDW DLV_NO _ENTRY if di e does not contain the byte size atitddDW AT _byte_si ze. It
returnsDW DLV_ERRORIf an error occurred.

rev 1.85, 27 Newember 2009 -26 -

-27-

5.3.14 dwarf_bitsize()

int dwarf_bitsize(
Dwarf _Die die,
Dwarf _Unsigned *return_size,
Dwar f _Error *error)

When it succeedsiwar f _bi t si ze() returnsDW DLV_OK and set$r et ur n_si ze to the number of
bits occupied by the bitdld value that is an attribute of thevei die. It returnsDW DLV_NO_ENTRY if
di e does not contain the bit size attrib DW AT _bit _si ze. It returnsDW DLV_ERROR if an error
occurred.

5.3.15 dwarf_bitoffset()

int dwarf_bitoffset(
Dwarf_Di e die,
Dwarf _Unsigned *return_size,
Dwarf _Error *error)

When it succeedsiwar f _bi t of f set () returnsDW DLV_OK and seté r et ur n_si ze to the number
of bits to the left of the most sigidént bit of the bit field alue. Thishit offset is not necessarily the net bit
offset within the structure or class , sirfid@&/ AT_dat a_nmenber _| ocat i on may give a lyte offset to
this DI E and the bit offset returned through the pointer does not include the bits in the fogte df
returnsDW DLV_NO_ENTRY if di e does not contain the bit offset attrte DW AT _bit _of fset. It
returnsDW DLV_ERRORIf an error occurred.

5.3.16 dwarf_srclang()

int dwarf _srcl ang(
Dwarf _Die die,
Dwarf _Unsigned *return_|ang,
Dwar f _Error *error)

When it succeedsgwar f _srcl ang() returnsDW DLV_CK and sets*return_|l ang to a code
indicating the source language of the compilation unit represented by the desdriptort returns
DW DLV_NO _ENTRY if di e does not represent a souride flebugging information entry (i.e. contain the
attributeDW AT | anguage). It returnsDW DLV_ERRORIf an error occurred.

5.3.17 dwarf_arrayorder()

int dwarf_arrayorder(
Dwarf_Di e die,
Dwar f _Unsigned *return_order,
Dwarf _Error *error)

When it succeedgjwar f _arrayorder () returnsDW DLV_OK and sets*r et ur n_order a ode
indicating the ordering of the array represented by the descdptor It returnsDW DLV_NO_ENTRY if
di e does not contain the array order atitdkDW AT _or der i ng. It returnsDW DLV_ERRCRIf an error
occurred.

rev 1.85, 27 Newember 2009 -27 -

-28 -

5.4 Attribute Queries

Based on the attriltes form, these operations are concerned with returning uninterpreted attribute data.
Since it is not abays olvious from the return value of these functions if an error occurred, one should
always supply arerror parameter or ha& aranged to hee an eror handling function imoked (see

dwar f _i nit())to determine the alidity of the returned value and the nature of emors that may hae
occurred.

A Dwarf Attribute descriptor describes an attribute of a specific die. Thus, each
Dwar f _Attri but e descriptor is implicitly associated with a specific die.

5.4.1 dwarf_hasform()

i nt dwarf_hasforn{
Dwarf _Attribute attr,
Dwarf _Hal f form
Dwar f _Bool *return_hasform
Dwarf _Error *error)

The functiondwar f _hasf or m() returnsDW DLV_OK and andouts anon-zero

value in the*r et urn_hasf or m boolean if the attribute represented by thearf_ Attri bute
descriptorat t r has the attribute formhor m If the attribute does not & that form zero is put into
*return_hasform DW DLV_ERRORIs returned on error.

5.4.2 dwarf_whatform()

i nt dwarf_what forn
Dwarf Attribute attr,
Dwar f _Hal f *return_form
Dwar f _Error *error)

When it succeedsiwar f _what f or n{) returnsDW DLV_CK and setg r et ur n_f or mto the attrilte
form code of the attrite represented by thBwarf Attri bute descriptorattr. It returns
DW DLV_ERROR on error An atribute using DW_FORM indirect fefctively has two forms. This
function returns the ‘final’ form foDW FORM i ndi r ect , not the DW FORM i ndi r ect itself. This
function is what most applications will want to call.

5.4.3 dwarf_whatform_direct()

int dwarf_whatformdirect(
Dwarf _Attribute attr,
Dwar f _Hal f *return_form
Dwarf _Error *error)

When it succeedsjwar f _what f orm di rect () returnsDW DLV_CK and sets‘ret urn_f or mto
the attribute form code of the attribute represented byDtker f _At tri but e descriptorattr. It
returns DW DLV_ERROR on error An dtribute usingDW FORM i ndi r ect effectively has two forms.
This returns the formdirectly’ in the initial form feld. Sowhen the form field iDW FORM i ndi r ect

this call returns th&W FORM i ndi r ect form, which is sometimes useful for dump utilities.

rev 1.85, 27 Newember 2009 -28 -

-29 -

5.4.4 dwarf whatattr()

int dwarf_whatattr(
Dwarf Attribute attr,
Dwar f _Hal f *return_attr,
Dwar f _Error *error)

When it succeedsiwar f _whatattr () returnsDW DLV_OK and setg$ret urn_attr to the attrilute
code represented by tbear f _Attri but e descriptorat t r. It returns DW DLV_ERROR on error.

5.4.5 dwarf_formref()

int dwarf _fornref(
Dwarf Attribute attr,
Dwarf O f *return_of fset,
Dwarf _Error *error)

When it succeedgjwar f _f ornref () returnsDW DLV_CK and sets'r et ur n_of f set to the CU-
relatve dfset represented by the descripgoit r if the form of the attribte belongs to thREFERENCE
class. attr must be a CU-local reference, not fornrbW FORM ref addr and not
DW FORM sec_offset . It is an eror for the form to not belong to this classt returns
DW DLV_ERRORoON error See alsalwar f _gl obal _f or nr ef below.

5.4.6 dwarf _global formref()

int dwarf _gl obal fornref(
Dwarf Attribute attr,
Dwarf O f *return_of fset,
Dwar f _Error *error)

When it succeedsiwar f _gl obal _fornref () returnsDW DLV_OK and set$ret urn_of f set to
the section-relate dfset represented by the descriptart r if the form of the attribute belongs to the
REFERENCE or other section-references classes.

attr can be am legd REFERENCE class form plus DWFORM ref addr or
DW FORM sec_of fset. It is an eror for the form to not belong to one of the reference claskes.
returnsDW DLV_ERRORon error See alsadwar f _f or nt ef above.

The caller must determine which section thefsetf returned applies to. The function
dwarf _get formclass() is usefulto determine the applicable section.

The function cowerts CU relatve dfsets from forms such as DW_FORM _ref4 into global section offsets.

5.4.7 dwarf_formaddr ()

rev 1.85, 27 Neember 2009 -29-

-30-

i nt dwarf _fornmaddr(
Dwarf Attribute attr,
Dwar f _Addr * return_addr,
Dwarf _Error *error)

When it succeedsiwar f _f or maddr () returnsDW DLV_OK and set$r et ur n_addr to the address
represented by the descriptdrt r if the form of the attribte belongs to thADDRESS class. ltis an error
for the form to not belong to this class. It retubM DLV_ERRCR on error.

5.4.8 dwarf_formflag()

int dwarf fornflag(
Dwarf Attribute attr,
Dwar f _Bool * return_bool,
Dwar f _Error *error)

When it succeedsiwar f _fornfl ag() returnsDW DLV_OK and set$ret urn_bool 1 (i.e. true) (if
the attribute has a non-zero value) @r(i.e. false) (if the attribute has a zeralue). It returns
DW DLV_ERRORonN error or if theat t r does not hae form flag.

5.4.9 dwarf_formudata()

i nt dwarf_fornudat a(
Dwarf Attribute attr,
Dwarf _Unsigned * return_uval ue,
Dwar f _Error * error)

The function dwarf _forrudata() returns DWDLV_OK and sets*return_uval ue to the
Dwar f _Unsi gned value of the attribite represented by the descripatrt r if the form of the attribte
belongs to theCONSTANT class. Itis an error for the form to not belong to this class. It returns
DW DLV_ERROR 0N error.

5.4.10 dwarf_formsdata()

int dwarf_fornsdata(
Dwarf Attribute attr,
Dwarf _Signed * return_sval ue,
Dwar f _Error *error)

The function dwarf formsdata() returns DW DLV _OK and sets*return_sval ue to the
Dwar f _Si gned vaue of the attribute represented by the descriptarr if the form of the attribte
belongs to th&CONSTANT class. Itis an error for the form to not belong to this class. If the size of the
data attribute referenced is smaller than the size dhe f _Si gned type, its value is signxéended. It
returnsDW DLV_ERROR on error.

5.4.11 dwarf_formblock()

rev 1.85, 27 Neember 2009 -30 -

-31-

i nt dwarf_fornbl ock(
Dwarf Attribute attr,
Dwarf Bl ock ** return_bl ock,
Dwarf _Error * error)

The functiondwar f _f or nbl ock() returnsDW DLV_OK and setsr et ur n_bl ock to a pointer to a
Dwar f _Bl ock structure containing the value of the attribute represented by the desatiptorif the
form of the attribute belongs to tlB: OCK class. Itis an error for the form to not belong to this clashe
storage pointed to by a successful returnlwér f _f or nbl ock() should be freed using the allocation
type DW DLA BLOCK, when no longer of interest (seelwarf_dealloc()). It returns
DW DLV_ERROR 0N error.

5.4.12 dwarf_formstring()

int dwarf_fornstring(
Dwarf Attribute attr,
char ** return_string,
Dwar f _Error *error)

The functiondwar f _f or nstri ng() returnsDW DLV_OK and set$ret urn_stri ng to a pointer to
a rull-terminated string containing the value of the attribute represented by the desdriptoif the form
of the attribute belongs to tt&TRI NG class. Itis an error for the form to not belong to this clasée
storage pointed to by a successful returrdwér f _fornstring() should not be freedThe pointer
points into existing BWARF memory and the pointer becomes staldlith after a call to
dwarf _finish. dwarf_fornstring() returnsDW DLV_ERRCRon error.

5.4.13 dwarf_formsig8()

i nt dwarf _fornsig8(
Dwarf Attribute attr,
Dwarf_Sig8 * return_sig8,
Dwarf _Error * error)

The function dwarf _formsi g8() returns DWDLV_OK and copies the 8 byte signature to a
Dwar f _Si g8 structure preided by the caller if the form of the attribute is of form
DW FORM r ef _si g8 (a member of theREFERENCE class). lItis an error for the form to be whing

but DW FORM r ef _si g8. It returnsDW DLV_ERROR on error.

This form is used to refer to a type unit.

5.4.14 dwarf_formsig8()

i nt dwarf _fornexprloc(
Dwarf Attribute attr,
Dwarf _Unsigned * return_exprlen,
Dwarf Ptr * bl ock _ptr,
Dwar f _Error * error)

The functiondwar f _f or mexpr | oc() returnsDW DLV_OK and sets the twvvalues thru the pointers to
the length and bytes of theWD FORM_eprloc entry if the form of the attribute is of form

rev 1.85, 27 Newember 2009 -31-

-32-

DW FORM exper | oc. It is an eror for the form to be anythingubDW FORM expr | oc. It returns
DW DLV_ERROR 0N error.

On success the value set throughrtleé ur n_expr | en pointer is the length of the locatiompzession.
On success the value set through Heock _ptr pointer is a pointer to the bytes of the location
expression itself.

5.4.15 dwarf_get form_class()

0. UNIX s a registered trademark of UNIX System Laboratories, Inc. in the United States and other countries.

