
A Consumer Library Interface to DWARF

David Anderson

1. INTRODUCTION

This document describes an interface tolibdwarf, a library of functions to provide access to DWARF
debugging information records, DWARF line number information, DWARF address range and global
names information, weak names information, DWARF frame description information, DWARF static
function names, DWARF static variables, and DWARF type information.

The document has long mentioned the "Unix International Programming Languages Special Interest
Group" (PLSIG), under whose auspices the DWARF committee was formed around 1991."Unix
International" was disbanded in the 1990s and no longer exists.

The DWARF committee published DWARF2 July 27, 1993.

In the mid 1990s this document and the library it describes (which the committee never endorsed, having
decided not to endorse or approve any particular library interface) was made available on the internet by
Silcon Graphics, Inc.

In 2005 the DWARF committee began an aff i liation with FreeStandards.org. In 2007 FreeStandards.org
merged with The Linux Foundation. TheDWARF committee dropped its affi liation with FreeStandards.org
in 2007 and established the dwarfstd.org website. See"http://www.dwarfstd.org" for current information
on standardization activities and a copy of the standard.

1.1 Copyright

Copyright 1993-2006 Silicon Graphics, Inc.

Copyright 2007-2009 David Anderson.

Permission is hereby granted to copy or republish or use any or all of this document without restriction
except that when publishing more than a small amount of the document please acknowledge Silicon
Graphics, Inc and David Anderson.

This document is distributed in the hope that it would be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE.

1.2 Purpose and Scope

The purpose of this document is to document a library of functions to access DWARF debugging
information. There is no effort made in this document to address the creation of these records as those
issues are addressed separately (see "A Producer Library Interface to DWARF").

Additionally, the focus of this document is the functional interface, and as such, implementation as well as
optimization issues are intentionally ignored.

1.3 Document History

A document was written about 1991 which had similar layout and interfaces. Writtenby people from Hal

rev 1.85, 27 November 2009 - 1 -

- 2 -

Corporation, That document described a library for reading DWARF1. Theauthors distributed paper
copies to the committee with the clearly expressed intent to propose the document as a supported interface
definition. Thecommittee decided not to pursue a library definition.

SGI wrote the document you are now reading in 1993 with a similar layout and content and organization,
but it was complete document rewrite with the intent to read DWARF2 (the DWARF version then in
existence). Theintent was (and is) to also cover future revisions of DWARF. All the function interfaces
were changed in 1994 to uniformly return a simple integer success-code (see DW_DLV_OK etc), generally
following the recommendations in the chapter titled "Candy Machine Interfaces" of "Writing Solid Code",
a book by Steve Maguire (published by Microsoft Press).

1.4 Definitions

DWARF debugging information entries (DIEs) are the segments of information placed in the.debug_*
sections by compilers, assemblers, and linkage editors that, in conjunction with line number entries, are
necessary for symbolic source-level debugging. Referto the latest "DWARF Debugging Information
Format" f rom www.dwarfstd.org for a more complete description of these entries.

This document adopts all the terms and definitions in "DWARF Debugging Information Format" versions 2
and 3. It originally focused on the implementation at Silicon Graphics, Inc., but now attempts to be more
generally useful.

1.5 Overview

The remaining sections of this document describe the proposed interface tolibdwarf, first by describing
the purpose of additional types defined by the interface, followed by descriptions of the available
operations. Thisdocument assumes you are thoroughly familiar with the information contained in the
DWARF Debugging Information Format document.

We separate the functions into several categories to emphasize that not all consumers want to use all the
functions. We call the categories Debugger, Internal-level, High-level, and Miscellaneous not because one
is more important than another but as a way of making the rather large set of function calls easier to
understand.

Unless otherwise specified, all functions and structures should be taken as being designed for Debugger
consumers.

The Debugger Interface of this library is intended to be used by debuggers. Theinterface is low-level
(close to dwarf) but suppresses irrelevant detail. A debugger will want to absorb all of some sections at
startup and will want to see little or nothing of some sections except at need. And even then will probably
want to absorb only the information in a single compilation unit at a time.A debugger does not care about
implementation details of the library.

The Internal-level Interface is for a DWARF prettyprinter and checker. A thorough prettyprinter will want
to know all kinds of internal things (like actual FORM numbers and actual offsets) so it can check for
appropriate structure in the DWARF data and print (on request) all that internal information for human
users and libdwarf authors and compiler-writers. Callsin this interface provide data a debugger does not
care about.

The High-level Interface is for higher level access (it is not really a high level interface!). Programssuch as
disassemblers will want to be able to display relevant information about functions and line numbers without
having to invest too much effort in looking at DWARF.

The miscellaneous interface is just what is left over: the error handler functions.

The following is a brief mention of the changes in this libdwarf from the libdwarf draft for DWARF Version
1 and recent changes.

rev 1.85, 27 November 2009 - 2 -

- 3 -

1.6 Items Changed

Added dwarf_set_reloc_application() and the default automatic application of Elf ’rela’ relocations to
DWARF sections (such rela sections appear in .o files, not in executables or shared objects, in general).
The dwarf_set_reloc_application() routine lets a consumer turn off the automatic application of ’rela’
relocations if desired (it is not clear why anyone would really want to do that, but possibly a consumer
could write its own relocation application). An example application that traverses a set of DIEs was added
to the new dwarfexample directory (not in this libdwarf directory, but in parallel to it). (July 10, 2009)

Added dwarf_get_TAG_name() (and the FORM AT and so on) interface functions so applications can get
the string of the TAG, Attribute, etc as needed. (June 2009)

Added dwarf_get_ranges_a() and dwarf_loclist_from_expr_a() functions which add arguments allowing a
correct address_size when the address_size varies by compilation unit (a varying address_size is quite rare
as of May 2009). (May 2009)

Added dwarf_set_frame_same_value(), and dwarf_set_frame_undefined_value() to complete the set of
frame-information functions needed to allow an application get all frame information returned correctly
(meaning that it can be correctly interpreted) for all ABIs.Documented dwarf_set_frame_cfa_value().
Corrected spelling to dwarf_set_frame_rule_initial_value(). (April2009).

Added support for various DWARF3 features, but primarily a new frame-information interface tailorable at
run-time to more than a single ABI. See dwarf_set_frame_rule_initial_value(),
dwarf_set_frame_rule_table_size(), dwarf_set_frame_cfa_value(). Seealso dwarf_get_fde_info_for_reg3()
and dwarf_get_fde_info_for_cfa_reg3(). (April 2006)

Added support for DWARF3 .debug_pubtypes section. Corrected various leaks (revising dealloc() calls,
adding new functions) and corrected dwarf_formstring() documentation.

Added dwarf_srclines_dealloc() as the previous deallocation method documented for data returned by
dwarf_srclines() was incapable of freeing all the allocated storage (14 July 2005).

dwarf_nextglob(), dwarf_globname(), and dwarf_globdie() were all changed to operate on the items in the
.debug_pubnames section.

All functions were modified to return solely an error code. Data is returned through pointer arguments.
This makes writing safe and correct library-using-code far easier. For justification for this approach, see
the chapter titled "Candy Machine Interfaces" in the book "Writing Solid Code" by Steve Maguire.

1.7 Items Removed

Dwarf_Type was removed since types are no longer special.dwarf_typeof() was removed since types are
no longer special.

Dwarf_Ellist was removed since element lists no longer are a special format.

Dwarf_Bounds was removed since bounds have been generalized.

dwarf_nextdie() was replaced by dwarf_next_cu_header() to reflect the real way DWARF is organized.
The dwarf_nextdie() was only useful for getting to compilation unit beginnings, so it does not seem harmful
to remove it in favor of a more direct function.

dwarf_childcnt() is removed on grounds that no good use was apparent.

dwarf_prevline() and dwarf_nextline() were removed on grounds this is better left to a debugger to do.
Similarly, dwarf_dieline() was removed.

dwarf_is1stline() was removed as it was not meaningful for the revised DWARF line operations.

Any libdwarf implementation might well decide to support all the removed functionality and to retain the
DWARF Version 1 meanings of that functionality. This would be difficult because the original libdwarf
draft specification used traditional C library interfaces which confuse the values returned by successful

rev 1.85, 27 November 2009 - 3 -

- 4 -

calls with exceptional conditions like failures and ’no more data’ indications.

1.8 Revision History

March 93 Work on DWARF2 SGI draft begins

June 94 The function returns are changed to return an error/success code only.

April 2006: Support for DWARF3 consumer operations is close to completion.

2. Types Definitions

2.1 General Description

The libdwarf.h header file contains typedefs and preprocessor definitions of types and symbolic names used
to reference objects oflibdwarf. The types defined by typedefs contained inlibdwarf.h all use the
convention of addingDwarf_ as a prefix and can be placed in three categories:

• Scalar types : The scalar types defined inlibdwarf.h are defined primarily for notational convenience
and identification. Dependingon the individual definition, they are interpreted as a value, a pointer,
or as a flag.

• Aggregate types : Some values can not be represented by a single scalar type; they must be
represented by a collection of, or as a union of, scalar and/or aggregate types.

• Opaque types : The complete definition of these types is intentionally omitted; their use is as handles
for query operations, which will yield either an instance of another opaque type to be used in another
query, or an instance of a scalar or aggregate type, which is the actual result.

2.2 Scalar Types

The following are the defined bylibdwarf.h:

typedef int Dwarf_Bool;
typedef unsigned long long Dwarf_Off;
typedef unsigned long long Dwarf_Unsigned;
typedef unsigned short Dwarf_Half;
typedef unsigned char Dwarf_Small;
typedef signed long long Dwarf_Signed;
typedef unsigned long long Dwarf_Addr;
typedef void *Dwarf_Ptr;
typedef void (*Dwarf_Handler)(Dwarf_Error *error, Dwarf_Ptr errarg);

Dwarf_Ptr is an address for use by the host program calling the library, not for representing pc-
values/addresses within the target object file. Dwarf_Addr is for pc-values within the target object file.
The sample scalar type assignments above are for a libdwarf.h that can read and write 32-bit or 64-bit
binaries on a 32-bit or 64-bit host machine. The types must bedefined appropriately for each
implementation of libdwarf. A description of these scalar types in the SGI/MIPS environment is given in
Figure 1.

rev 1.85, 27 November 2009 - 4 -

- 5 -

NAME SIZE ALIGNMENT PURPOSE
Dwarf_Bool 4 4 Boolean states
Dwarf_Off 8 8 Unsigned file offset
Dwarf_Unsigned 8 8 Unsigned large integer
Dwarf_Half 2 2 Unsigned medium integer
Dwarf_Small 1 1 Unsigned small integer
Dwarf_Signed 8 8 Signed large integer
Dwarf_Addr 8 8 Program address

(target program)
Dwarf_Ptr 4|8 4|8 Dwarf section pointer

(host program)
Dwarf_Handler 4|8 4|8 Pointerto

error handler function

Figure 1. Scalar Types

2.3 Aggregate Types

The following aggregate types are defined by libdwarf.h: Dwarf_Loc, Dwarf_Locdesc,
Dwarf_Block, Dwarf_Frame_Op. Dwarf_Regtable. Dwarf_Regtable3. While most of
libdwarf acts on or returns simple values or opaque pointer types, this small set of structures seems
useful.

2.3.1 Location Record

TheDwarf_Loc type identifies a single atom of a location description or a location expression.

typedef struct {
Dwarf_Small lr_atom;
Dwarf_Unsigned lr_number;
Dwarf_Unsigned lr_number2;
Dwarf_Unsigned lr_offset;

} Dwarf_Loc;

Thelr_atom identifies the atom corresponding to theDW_OP_* definition in dwarf.h and it represents
the operation to be performed in order to locate the item in question.

Thelr_number field is the operand to be used in the calculation specified by thelr_atom field; not all
atoms use this field. Someatom operations imply signed numbers so it is necessary to cast this to a
Dwarf_Signed type for those operations.

Thelr_number2 field is the second operand specified by thelr_atom field; onlyDW_OP_BREGX has
this field. Someatom operations imply signed numbers so it may be necessary to cast this to a
Dwarf_Signed type for those operations.

The lr_offset field is the byte offset (within the block the location record came from) of the atom
specified by thelr_atom field. Thisis set on all atoms. This is useful for operationsDW_OP_SKIP and
DW_OP_BRA.

2.3.2 Location Description

TheDwarf_Locdesc type represents an ordered list ofDwarf_Loc records used in the calculation to

rev 1.85, 27 November 2009 - 5 -

- 6 -

locate an item. Note that in many cases, the location can only be calculated at runtime of the associated
program.

typedef struct {
Dwarf_Addr ld_lopc;
Dwarf_Addr ld_hipc;
Dwarf_Unsigned ld_cents;
Dwarf_Loc* ld_s;

} Dwarf_Locdesc;

The ld_lopc andld_hipc fields provide an address range for which this location descriptor is valid.
Both of these fields are set tozero if the location descriptor is valid throughout the scope of the item it is
associated with. These addresses are virtual memory addresses, not offsets-from-something. Thevirtual
memory addresses do not account for dso movement (none of the pc values from libdwarf do that, it is up to
the consumer to do that).

Theld_cents field contains a count of the number ofDwarf_Loc entries pointed to by theld_s field.

Theld_s field points to an array ofDwarf_Loc records.

2.3.3 Data Block

The Dwarf_Block type is used to contain the value of an attribute whose form is either
DW_FORM_block1, DW_FORM_block2, DW_FORM_block4, DW_FORM_block8, or
DW_FORM_block. Its intended use is to deliver the value for an attribute of any of these forms.

typedef struct {
Dwarf_Unsigned bl_len;
Dwarf_Ptr bl_data;

} Dwarf_Block;

Thebl_len field contains the length in bytes of the data pointed to by thebl_data field.

Thebl_data field contains a pointer to the uninterpreted data. Since we usea Dwarf_Ptr here one
must copy the pointer to some other type (typically anunsigned char *) so one can add increments to
index through the data. The data pointed to bybl_data is not necessarily at any useful alignment.

2.3.4 Frame Operation Codes: DWARF 2

This interface is adequate for DWARF2 but not for DWARF3. A separate interface usable for DWARF3
and for DWARF2 is described below.

The DWARF2Dwarf_Frame_Op type is used to contain the data of a single instruction of an instruction-
sequence of low-level information from the section containing frame information. This is ordinarily used
by Internal-level Consumers trying to print everything in detail.

rev 1.85, 27 November 2009 - 6 -

- 7 -

typedef struct {
Dwarf_Small fp_base_op;
Dwarf_Small fp_extended_op;
Dwarf_Half fp_register;
Dwarf_Signed fp_offset;
Dwarf_Offset fp_instr_offset;

} Dwarf_Frame_Op;

fp_base_op is the 2-bit basic op code.fp_extended_op is the 6-bit extended opcode (if
fp_base_op indicated there was an extended op code) and is zero otherwise.

fp_register is any (or the first) register value as defined in theCall Frame Instruction
Encodings figure in thedwarf document. Ifnot used with the Op it is 0.

fp_offset is the address, delta, offset, or second register as defined in theCall Frame
Instruction Encodings figure in thedwarf document. Ifthis is anaddress then the value
should be cast to(Dwarf_Addr) before being used. In any implementation this field *must* be as large
as the larger of Dwarf_Signed and Dwarf_Addr for this to work properly. If not used with the op it is 0.

fp_instr_offset is the byte_offset (within the instruction stream of the frame instructions) of this
operation. Itstarts at 0 for a given frame descriptor.

2.3.5 Frame Regtable: DWARF 2

This interface is adequate for DWARF2 but not for DWARF3. A separate interface usable for DWARF3
and for DWARF2 is described below.

TheDwarf_Regtable type is used to contain the register-restore information for all registers at a given
PC value. Normallyused by debuggers.

/* DW_REG_TABLE_SIZE must reflect the number of registers
*(DW_FRAME_LAST_REG_NUM) as defined in dwarf.h
*/
#define DW_REG_TABLE_SIZE <fill in size here, 66 for MIPS/IRIX>
typedef struct {

struct {
Dwarf_Small dw_offset_relevant;
Dwarf_Half dw_regnum;
Dwarf_Addr dw_offset;

} rules[DW_REG_TABLE_SIZE];
} Dwarf_Regtable;

The array is indexed by register number. The field values for each index are described next. For clarity we
describe the field values for index rules[M] (M being any leg al array element index).

dw_offset_relevant is non-zero to indicate thedw_offset field is meaningful. If zero then the
dw_offset is zero and should be ignored.

dw_regnum is the register number applicable.If dw_offset_relevant is zero, then this is the
register number of the register containing the value for register M.If dw_offset_relevant is non-
zero, then this is the register number of the register to use as a base (M may be DW_FRAME_CFA_COL,
for example) and thedw_offset value applies. The value of register M is therefore the value of register
dw_regnum.

dw_offset should be ignored ifdw_offset_relevant is zero. If dw_offset_relevant is non-
zero, then the consumer code should add the value to the value of the registerdw_regnum to produce the
value.

rev 1.85, 27 November 2009 - 7 -

- 8 -

2.3.6 Frame Operation Codes: DWARF 3 (and DWARF2)

This interface is adequate for DWARF3 and for DWARF2. It is new in libdwarf in April 2006. The
DWARF2 Dwarf_Frame_Op3 type is used to contain the data of a single instruction of an instruction-
sequence of low-level information from the section containing frame information.This is ordinarily used
by Internal-level Consumers trying to print everything in detail.

typedef struct {
Dwarf_Small fp_base_op;
Dwarf_Small fp_extended_op;
Dwarf_Half fp_register;

/* Value may be signed, depends on op.
Any applicable data_alignment_factor has
not been applied, this is the raw offset. */

Dwarf_Unsigned fp_offset_or_block_len;
Dwarf_Small *fp_expr_block;

Dwarf_Off fp_instr_offset;
} Dwarf_Frame_Op3;

fp_base_op is the 2-bit basic op code.fp_extended_op is the 6-bit extended opcode (if
fp_base_op indicated there was an extended op code) and is zero otherwise.

fp_register is any (or the first) register value as defined in theCall Frame Instruction
Encodings figure in thedwarf document. Ifnot used with the Op it is 0.

fp_offset_or_block_len is the address, delta, offset, or second register as defined in theCall
Frame Instruction Encodings figure in thedwarf document. Or (depending on the op, it may
be the length of the dwarf-expression block pointed to byfp_expr_block. If this is anaddress then
the value should be cast to(Dwarf_Addr) before being used.In any implementation this field *must*
be as large as the larger of Dwarf_Signed and Dwarf_Addr for this to work properly. If not used with the
op it is 0.

fp_expr_block (if applicable to the op) points to a dwarf-expression block which is
fp_offset_or_block_len bytes long.

fp_instr_offset is the byte_offset (within the instruction stream of the frame instructions) of this
operation. Itstarts at 0 for a given frame descriptor.

2.3.7 Frame Regtable: DWARF 3

This interface is adequate for DWARF3 and for DWARF2. It is new in libdwarf as of April 2006.The
Dwarf_Regtable3 type is used to contain the register-restore information for all registers at a given PC
value. Normallyused by debuggers.

rev 1.85, 27 November 2009 - 8 -

- 9 -

typedef struct Dwarf_Regtable_Entry3_s {
Dwarf_Small dw_offset_relevant;
Dwarf_Small dw_value_type;
Dwarf_Half dw_regnum;
Dwarf_Unsigned dw_offset_or_block_len;
Dwarf_Ptr dw_block_ptr;

}Dwarf_Regtable_Entry3;

typedef struct Dwarf_Regtable3_s {
struct Dwarf_Regtable_Entry3_s rt3_cfa_rule;

Dwarf_Half rt3_reg_table_size;
struct Dwarf_Regtable_Entry3_s * rt3_rules;

} Dwarf_Regtable3;

The array is indexed by register number. The field values for each index are described next. For clarity we
describe the field values for index rules[M] (M being any leg al array element index).
(DW_FRAME_CFA_COL3 DW_FRAME_SAME_VAL, DW_FRAME_UNDEFINED_VAL are not legal
array indexes, nor is any index < 0 or > rt3_reg_table_size); The caller of routines using this struct must
create data space for rt3_reg_table_size entries of struct Dwarf_Regtable_Entry3_s and arrange that
rt3_rules points to that space and that rt3_reg_table_size is set correctly. The caller need not (but may)
initialize the contents of the rt3_cfa_rule or the rt3_rules array. The following applies to each rt3_rules rule
M:

dw_regnum is the register number applicable. If dw_regnum is
DW_FRAME_UNDEFINED_VAL, then the register I has undefined value. If dw_regnum is
DW_FRAME_SAME_VAL, then the register I has the same value as in the previous frame.

If dw_regnum is neither of these two, then the following apply:

dw_value_type determines the meaning of the other fields. It is one of DW_EXPR_OFFSET
(0), DW_EXPR_VAL_OFFSET(1), DW_EXPR_EXPRESSION(2) or
DW_EXPR_VAL_EXPRESSION(3).

If dw_value_type is DW_EXPR_OFFSET (0) then this is as in DWARF2 and the offset(N)
rule orthe register(R) rule of the DWARF3 and DWARF2 document applies. The value is either:

If dw_offset_relevant is non-zero, thendw_regnum is effectively ignored but
must be identical to DW_FRAME_CFA_COL3 and thedw_offset value applies.
The value of register M is therefore the value of CFA plus the value ofdw_offset.
The result of the calculation is the address in memory where the value of register M
resides. Thisis the offset(N) rule of the DWARF2 and DWARF3 documents.

dw_offset_relevant is zero it indicates thedw_offset field is not meaningful.
The value of register M is the value currently in register dw_regnum (the value
DW_FRAME_CFA_COL3 must not appear, only real registers). Thisis the register(R)
rule of the DWARF3 spec.

If dw_value_type is DW_EXPR_OFFSET (1) then this is the the val_offset(N) rule of the
DWARF3 spec applies. The calculation is identical to that of DW_EXPR_OFFSET (0) but the
value is interpreted as the value of register M (rather than the address where register M’s value is
stored).

If dw_value_type is DW_EXPR_EXPRESSION (2) then this is the the expression(E) rule of
the DWARF3 document.

dw_offset_or_block_len is the length in bytes of the in-memory blockpointed
at by dw_block_ptr. dw_block_ptr is a DWARF expression. Evaluate that

rev 1.85, 27 November 2009 - 9 -

- 10 -

expression and the result is the address where the previous value of register M is found.
If dw_value_type is DW_EXPR_VAL_EXPRESSION (3) then this is the the
val_expression(E) rule of the DWARF3 spec.

dw_offset_or_block_len is the length in bytes of the in-memory blockpointed
at by dw_block_ptr. dw_block_ptr is a DWARF expression. Evaluate that
expression and the result is the previous value of register M.

The rulert3_cfa_rule is the current value of the CFA. It is interpreted exactly like any
register M rule (as described just above) except that dw_regnum cannot be
CW_FRAME_CFA_REG3 or DW_FRAME_UNDEFINED_VAL or DW_FRAME_SAME_VAL
but must be a real register number.

2.3.8 Macro Details Record

TheDwarf_Macro_Details type gives information about a single entry in the .debug.macinfo section.

struct Dwarf_Macro_Details_s {
Dwarf_Off dmd_offset;
Dwarf_Small dmd_type;
Dwarf_Signed dmd_lineno;
Dwarf_Signed dmd_fileindex;
char * dmd_macro;

};
typedef struct Dwarf_Macro_Details_s Dwarf_Macro_Details;

dmd_offset is the byte offset, within the .debug_macinfo section, of this macro information.

dmd_type is the type code of this macro info entry (or 0, the type code indicating that this is the end of
macro information entries for a compilation unit.See DW_MACINFO_define, etc in the DWARF
document.

dmd_lineno is the line number where this entry was found, or 0 if there is no applicable line number.

dmd_fileindex is the file index of the file involved. This is only guaranteed meaningful on a
DW_MACINFO_start_file dmd_type. Set to -1 if unknown (see the functional interface for more
details).

dmd_macro is the applicable string.For a DW_MACINFO_define this is the macro name and value.
For a DW_MACINFO_undef, or this is the macro name.For a DW_MACINFO_vendor_ext this is the
vendor-defined string value. For otherdmd_types this is 0.

2.4 Opaque Types

The opaque types declared inlibdwarf.h are used as descriptors for queries against DWARF information
stored in various debugging sections.Each time an instance of an opaque type is returned as a result of a
libdwarf operation (Dwarf_Debug excepted), it should be freed, usingdwarf_dealloc() when it is
no longer of use (read the following documentation for details, as in at least one case there is a special
routine provided for deallocation anddwarf_dealloc() is not directly called: see
dwarf_srclines()). Somefunctions return a number of instances of an opaque type in a block, by
means of a pointer to the block and a count of the number of opaque descriptors in the block: see the
function description for deallocation rules for such functions. The list of opaque types defined in
libdwarf.h that are pertinent to the Consumer Library, and their intended use is described below.

typedef struct Dwarf_Debug_s* Dwarf_Debug;

rev 1.85, 27 November 2009 - 10 -

- 11 -

An instance of theDwarf_Debug type is created as a result of a successful call todwarf_init(), or
dwarf_elf_init(), and is used as a descriptor for subsequent access to mostlibdwarf functions on
that object. The storage pointed to by this descriptor should be not be freed, using the
dwarf_dealloc() function. Insteadfree it withdwarf_finish().

typedef struct Dwarf_Die_s* Dwarf_Die;

An instance of aDwarf_Die type is returned from a successful call to thedwarf_siblingof(),
dwarf_child, or dwarf_offdie() function, and is used as a descriptor for queries about information
related to that DIE.The storage pointed to by this descriptor should be freed, usingdwarf_dealloc()
with the allocation typeDW_DLA_DIE when no longer needed.

typedef struct Dwarf_Line_s* Dwarf_Line;

Instances ofDwarf_Line type are returned from a successful call to thedwarf_srclines()
function, and are used as descriptors for queries about source lines. The storage pointed to by these
descriptors should be individually freed, usingdwarf_dealloc() with the allocation type
DW_DLA_LINE when no longer needed.

typedef struct Dwarf_Global_s* Dwarf_Global;

Instances ofDwarf_Global type are returned from a successful call to thedwarf_get_globals()
function, and are used as descriptors for queries about global names (pubnames).

typedef struct Dwarf_Weak_s* Dwarf_Weak;

Instances of Dwarf_Weak type are returned from a successful call to the SGI-specific
dwarf_get_weaks() function, and are used as descriptors for queries about weak names. The storage
pointed to by these descriptors should be individually freed, usingdwarf_dealloc() with the
allocation type DW_DLA_WEAK_CONTEXT (or DW_DLA_WEAK, an older name, supported for
compatibility) when no longer needed.

typedef struct Dwarf_Func_s* Dwarf_Func;

Instances of Dwarf_Func type are returned from a successful call to the SGI-specific
dwarf_get_funcs() function, and are used as descriptors for queries about static function names.

typedef struct Dwarf_Type_s* Dwarf_Type;

Instances of Dwarf_Type type are returned from a successful call to the SGI-specific
dwarf_get_types() function, and are used as descriptors for queries about user defined types.

typedef struct Dwarf_Var_s* Dwarf_Var;

Instances of Dwarf_Var type are returned from a successful call to the SGI-specific
dwarf_get_vars() function, and are used as descriptors for queries about static variables.

typedef struct Dwarf_Error_s* Dwarf_Error;

This descriptor points to a structure that provides detailed information about errors detected bylibdwarf.
Users typically provide a location forlibdwarf to store this descriptor for the user to obtain more
information about the error. The storage pointed to by this descriptor should be freed, using
dwarf_dealloc() with the allocation typeDW_DLA_ERROR when no longer needed.

rev 1.85, 27 November 2009 - 11 -

- 12 -

typedef struct Dwarf_Attribute_s* Dwarf_Attribute;

Instances ofDwarf_Attribute type are returned from a successful call to thedwarf_attrlist(),
or dwarf_attr() functions, and are used as descriptors for queries about attribute values. Thestorage
pointed to by this descriptor should be individually freed, usingdwarf_dealloc() with the allocation
typeDW_DLA_ATTR when no longer needed.

typedef struct Dwarf_Abbrev_s* Dwarf_Abbrev;

An instance of aDwarf_Abbrev type is returned from a successful call todwarf_get_abbrev(),
and is used as a descriptor for queries about abbreviations in the .debug_abbrev section. Thestorage
pointed to by this descriptor should be freed, usingdwarf_dealloc() with the allocation type
DW_DLA_ABBREV when no longer needed.

typedef struct Dwarf_Fde_s* Dwarf_Fde;

Instances ofDwarf_Fde type are returned from a successful call to thedwarf_get_fde_list(),
dwarf_get_fde_for_die(), or dwarf_get_fde_at_pc() functions, and are used as descriptors
for queries about frames descriptors.

typedef struct Dwarf_Cie_s* Dwarf_Cie;

Instances ofDwarf_Cie type are returned from a successful call to thedwarf_get_fde_list()
function, and are used as descriptors for queries about information that is common to several frames.

typedef struct Dwarf_Arange_s* Dwarf_Arange;

Instances ofDwarf_Arange type are returned from successful calls to thedwarf_get_aranges(),
or dwarf_get_arange() functions, and are used as descriptors for queries about address ranges.The
storage pointed to by this descriptor should be individually freed, usingdwarf_dealloc() with the
allocation typeDW_DLA_ARANGE when no longer needed.

3. Error Handling

The method for detection and disposition of error conditions that arise during access of debugging
information vialibdwarf is consistent across alllibdwarf functions that are capable of producing an error.
This section describes the method used bylibdwarf in notifying client programs of error conditions.

Most functions withinlibdwarf accept as an argument a pointer to aDwarf_Error descriptor where a
Dwarf_Error descriptor is stored if an error is detected by the function.Routines in the client program
that provide this argument can query theDwarf_Error descriptor to determine the nature of the error and
perform appropriate processing.

A client program can also specify a function to be invoked upon detection of an error at the time the library
is initialized (seedwarf_init()). Whena libdwarf routine detects an error, this function is called with
two arguments: a code indicating the nature of the error and a pointer provided by the client at initialization
(again seedwarf_init()). This pointer argument can be used to relay information between the error
handler and other routines of the client program.A client program can specify or change both the error
handling function and the pointer argument after initialization usingdwarf_seterrhand() and
dwarf_seterrarg().

In the case wherelibdwarf functions are not provided a pointer to aDwarf_Error descriptor, and no
error handling function was provided at initialization,libdwarf functions terminate execution by calling
abort(3C).

rev 1.85, 27 November 2009 - 12 -

- 13 -

The following lists the processing steps taken upon detection of an error:

1. Checkthe error argument; if not aNULL pointer, allocate and initialize aDwarf_Error
descriptor with information describing the error, place this descriptor in the area pointed to by
error, and return a value indicating an error condition.

2. If an errhand argument was provided todwarf_init() at initialization, callerrhand()
passing it the error descriptor and the value of theerrarg argument provided to
dwarf_init(). If the error handling function returns, return a value indicating an error
condition.

3. Terminate program execution by callingabort(3C).

In all cases, it is clear from the value returned from a function that an error occurred in executing the
function, since DW_DLV_ERROR is returned.

As can be seen from the above steps, the client program can provide an error handler at initialization, and
still provide anerror argument tolibdwarf functions when it is not desired to have the error handler
invoked.

If a libdwarf function is called with invalid arguments, the behavior is undefined. In particular,
supplying aNULL pointer to alibdwarf function (except where explicitly permitted), or pointers to
invalid addresses or uninitialized data causes undefined behavior; the return value in such cases is
undefined, and the function may fail to invoke the caller supplied error handler or to return a meaningful
error number. Implementations also may abort execution for such cases.

3.1 Returned values in the functional interface

Values returned bylibdwarf functions to indicate success and errors are enumerated in Figure 2.The
DW_DLV_NO_ENTRY case is useful for functions need to indicate that while there was no data to return
there was no error either. For example,dwarf_siblingof() may returnDW_DLV_NO_ENTRY to
indicate that that there was no sibling to return.

SYMBOLIC NAME VALUE MEANING
DW_DLV_ERROR 1 Error
DW_DLV_OK 0 Successful call
DW_DLV_NO_ENTRY -1 No applicable value

Figure 2. Error Indications

Each function in the interface that returns a value returns one of the integers in the above figure.

If DW_DLV_ERROR is returned and a pointer to aDwarf_Error pointer is passed to the function, then a
Dwarf_Error handle is returned through the pointer. No other pointer value in the interface returns a value.
After the Dwarf_Error is no longer of interest, a
dwarf_dealloc(dbg,dw_err,DW_DLA_ERROR) on the error pointer is appropriate to free any
space used by the error information.

If DW_DLV_NO_ENTRY is returned no pointer value in the interface returns a value.

If DW_DLV_OK is returned, theDwarf_Error pointer, if supplied, is not touched, but any other values to
be returned through pointers are returned. In this case calls (depending on the exact function returning the
error) todwarf_dealloc() may be appropriate once the particular pointer returned is no longer of
interest.

Pointers passed to allow values to be returned through them are uniformly the last pointers in each
argument list.

All the interface functions are defined from the point of view of the writer-of-the-library (as is traditional

rev 1.85, 27 November 2009 - 13 -

- 14 -

for UN*X library documentation), not from the point of view of the user of the library. The caller might
code:

Dwarf_Line line;
Dwarf_Signed ret_loff;
Dwarf_Error err;
int retval = dwarf_lineoff(line,&ret_loff,&err);

for the function defined as

int dwarf_lineoff(Dwarf_Line line,Dwarf_Signed *return_lineoff,
Dwarf_Error* err);

and this document refers to the function as returning the value through *err or *return_lineoff or uses the
phrase "returns in the location pointed to by err". Sometimes other similar phrases are used.

4. Memory Management

Several of the functions that compriselibdwarf return pointers (opaque descriptors) to structures that have
been dynamically allocated by the library. To aid in the management of dynamic memory, the function
dwarf_dealloc() is provided to free storage allocated as a result of a call to alibdwarf function. This
section describes the strategy that should be taken by a client program in managing dynamic storage.

4.1 Read-only Properties

All pointers (opaque descriptors) returned by or as a result of alibdwarf Consumer Library call should be
assumed to point to read-only memory. The results are undefined forlibdwarf clients that attempt to write
to a region pointed to by a value returned by alibdwarf Consumer Library call.

4.2 Storage Deallocation

See the section "Returned values in the functional interface", above, for the general rules where calls to
dwarf_dealloc() is appropriate.

In some cases the pointers returned by alibdwarf call are pointers to data which is not freeable. The library
knows from the allocation type provided to it whether the space is freeable or not and will not free
inappropriately whendwarf_dealloc() is called. So it is vital thatdwarf_dealloc() be called
with the proper allocation type.

For most storage allocated bylibdwarf, the client can free the storage for reuse by calling
dwarf_dealloc(), providing it with theDwarf_Debug descriptor specifying the object for which the
storage was allocated, a pointer to the area to be free-ed, and an identifier that specifies what the pointer
points to (the allocation type).For example, to free aDwarf_Die die belonging the the object
represented byDwarf_Debug dbg, allocated by a call todwarf_siblingof(), the call to
dwarf_dealloc() would be:

dwarf_dealloc(dbg, die, DW_DLA_DIE);

To free storage allocated in the form of a list of pointers (opaque descriptors), each member of the list
should be deallocated, followed by deallocation of the actual list itself. The following code fragment uses
an invocation ofdwarf_attrlist() as an example to illustrate a technique that can be used to free
storage from anylibdwarf routine that returns a list:

rev 1.85, 27 November 2009 - 14 -

- 15 -

Dwarf_Unsigned atcnt;
Dwarf_Attribute *atlist;
int errv;

errv = dwarf_attrlist(somedie, &atlist,&atcnt, &error);
if (errv == DW_DLV_OK) {

for (i = 0; i < atcnt; ++i) {
/* use atlist[i] */
dwarf_dealloc(dbg, atlist[i], DW_DLA_ATTR);

}
dwarf_dealloc(dbg, atlist, DW_DLA_LIST);

}

The Dwarf_Debug returned fromdwarf_init() or dwarf_elf_init() cannot be freed using
dwarf_dealloc(). The functiondwarf_finish() will deallocate all dynamic storage associated
with an instance of aDwarf_Debug type. Inparticular, it will deallocate all dynamically allocated space
associated with theDwarf_Debug descriptor, and finally make the descriptor invalid.

An Dwarf_Error returned fromdwarf_init() or dwarf_elf_init() in case of a failure cannot
be freed usingdwarf_dealloc(). The only way to free theDwarf_Error from either of those calls
is to usefree(3) directly. Every Dwarf_Error must be freed bydwarf_dealloc() except those
returned bydwarf_init() or dwarf_elf_init().

The codes that identify the storage pointed to in calls todwarf_dealloc() are described in figure 3.

rev 1.85, 27 November 2009 - 15 -

- 16 -

IDENTIFIER USED TO FREE
DW_DLA_STRING char*
DW_DLA_LOC Dwarf_Loc
DW_DLA_LOCDESC Dwarf_Locdesc
DW_DLA_ELLIST Dwarf_Ellist (not used)
DW_DLA_BOUNDS Dwarf_Bounds (not used)
DW_DLA_BLOCK Dwarf_Block
DW_DLA_DEBUG Dwarf_Debug (do not use)
DW_DLA_DIE Dwarf_Die
DW_DLA_LINE Dwarf_Line
DW_DLA_ATTR Dwarf_Attribute
DW_DLA_TYPE Dwarf_Type (notused)
DW_DLA_SUBSCR Dwarf_Subscr (not used)
DW_DLA_GLOBAL_CONTEXT Dwarf_Global
DW_DLA_ERROR Dwarf_Error
DW_DLA_LIST alist of opaque descriptors
DW_DLA_LINEBUF Dwarf_Line* (not used)
DW_DLA_ARANGE Dwarf_Arange
DW_DLA_ABBREV Dwarf_Abbrev
DW_DLA_FRAME_OP Dwarf_Frame_Op
DW_DLA_CIE Dwarf_Cie
DW_DLA_FDE Dwarf_Fde
DW_DLA_LOC_BLOCK Dwarf_Loc Block
DW_DLA_FRAME_BLOCK Dwarf_Frame Block (not used)
DW_DLA_FUNC_CONTEXT Dwarf_Func
DW_DLA_TYPENAME_CONTEXT Dwarf_Type
DW_DLA_VAR_CONTEXT Dwarf_Var
DW_DLA_WEAK_CONTEXT Dwarf_Weak
DW_DLA_PUBTYPES_CONTEXT Dwarf_Pubtype

Figure 3. Allocation/Deallocation Identifiers

5. Functional Interface

This section describes the functions available in thelibdwarf library. Each function description includes its
definition, followed by one or more paragraph describing the function’s operation.

The following sections describe these functions.

5.1 Initialization Operations

These functions are concerned with preparing an object file for subsequent access by the functions in
libdwarf and with releasing allocated resources when access is complete.

5.1.1 dwarf_init()

rev 1.85, 27 November 2009 - 16 -

- 17 -

int dwarf_init(
int fd,
Dwarf_Unsigned access,
Dwarf_Handler errhand,
Dwarf_Ptr errarg,
Dwarf_Debug * dbg,
Dwarf_Error *error)

When it returnsDW_DLV_OK, the functiondwarf_init() returns throughdbg a Dwarf_Debug
descriptor that represents a handle for accessing debugging records associated with the open file descriptor
fd. DW_DLV_NO_ENTRY is returned if the object does not contain DWARF debugging information.
DW_DLV_ERROR is returned if an error occurred.Theaccess argument indicates what access is allowed
for the section.The DW_DLC_READ parameter is valid for read access (only read access is defined or
discussed in this document).The errhand argument is a pointer to a function that will be invoked
whenever an error is detected as a result of alibdwarf operation. Theerrarg argument is passed as an
argument to theerrhand function. Thefi le descriptor associated with thefd argument must refer to an
ordinary file (i.e. not a pipe, socket, device, /proc entry, etc.), be opened with the at least as much
permission as specified by theaccess argument, and cannot be closed or used as an argument to any
system calls by the client until afterdwarf_finish() is called. The seek position of the file associated
with fd is undefined upon return ofdwarf_init().

With SGI IRIX, by default it is allowed that the appclose() fd immediately after calling
dwarf_init(), but that is nota portable approach (that it works is an accidental side effect of the fact
that SGI IRIX usesELF_C_READ_MMAP in its hidden internal call toelf_begin()). The portable
approach is to consider thatfd must be left open till after the corresponding dwarf_finish() call has
returned.

Sincedwarf_init() uses the same error handling processing as otherlibdwarf functions (seeError
Handling above), client programs will generally supply anerror parameter to bypass the default actions
during initialization unless the default actions are appropriate.

5.1.2 dwarf_elf_init()

int dwarf_elf_init(
Elf * elf_file_pointer,
Dwarf_Unsigned access,
Dwarf_Handler errhand,
Dwarf_Ptr errarg,
Dwarf_Debug * dbg,
Dwarf_Error *error)

The functiondwarf_elf_init() is identical todwarf_init() except that an openElf * pointer
is passed instead of a file descriptor. In systems supportingELF object files this may be more space or
time-efficient than usingdwarf_init(). The client is allowed to use theElf * pointer for its own
purposes without restriction during the time theDwarf_Debug is open, except that the client should not
elf_end() the pointer till afterdwarf_finish is called.

5.1.3 dwarf_get_elf()

rev 1.85, 27 November 2009 - 17 -

- 18 -

int dwarf_get_elf(
Dwarf_Debug dbg,
Elf ** elf,
Dwarf_Error *error)

When it returnsDW_DLV_OK, the functiondwarf_get_elf() returns through the pointerelf theElf
* handle used to access the object represented by theDwarf_Debug descriptordbg. It returns
DW_DLV_ERROR on error.

Becauseint dwarf_init() opens an Elf descriptor on its fd anddwarf_finish() does not close
that descriptor, an app should usedwarf_get_elf and should callelf_end with the pointer returned
through theElf** handle created byint dwarf_init().

This function is not meaningful for a system that does not use the Elf format for objects.

5.1.4 dwarf_finish()

int dwarf_finish(
Dwarf_Debug dbg,
Dwarf_Error *error)

The functiondwarf_finish() releases allLibdwarf internal resources associated with the descriptor
dbg, and invalidatesdbg. It returnsDW_DLV_ERROR if there is an error during the finishing operation.It
returnsDW_DLV_OK for a successful operation.

Becauseint dwarf_init() opens an Elf descriptor on its fd anddwarf_finish() does not close
that descriptor, an app should usedwarf_get_elf and should callelf_end with the pointer returned
through theElf** handle created byint dwarf_init().

5.1.5 dwarf_set_stringcheck()

int dwarf_set_stringcheck(
int stringcheck)

The functionint dwarf_set_stringcheck() sets a global flag and returns the previous value of
the global flag.

If the stringcheck global flag is zero (the default) libdwarf does not do string length validity checks. If the
stringcheck global flag is non-zero libdwarf does do string length validity checks (the checks do slow
libdwarf down).

The global flag is really just 8 bits long, upperbits are not noticed or recorded.

5.1.6 dwarf_set_reloc_application()

int dwarf_set_reloc_application(
int apply)

The functionint dwarf_set_reloc_application() sets a global flag and returns the previous
value of the global flag.

rev 1.85, 27 November 2009 - 18 -

- 19 -

If the reloc_application global flag is non-zero (the default) then the applicable .rela section (if one exists)
will be processed and applied to any DWARF section when it is read in. If the reloc_application global flag
is zero no such relocation-application is attempted.

Not all machine types (elf header e_machine) or all relocations are supported, but then very few relocation
types apply to DWARF debug sections.

The global flag is really just 8 bits long, upperbits are not noticed or recorded.

It seems unlikely anyone will need to call this function.

5.2 Debugging Information Entry Delivery Operations

These functions are concerned with accessing debugging information entries.

5.2.1 Debugging Information Entry Debugger Delivery Operations

5.2.2 dwarf_next_cu_header_b()

int dwarf_next_cu_header_b(
Dwarf_debug dbg,
Dwarf_Unsigned *cu_header_length,
Dwarf_Half *version_stamp,
Dwarf_Unsigned *abbrev_offset,
Dwarf_Half *address_size,
Dwarf_Half *offset_size,
Dwarf_Half *extension_size,
Dwarf_Unsigned *next_cu_header,
Dwarf_Error *error);

The functiondwarf_next_cu_header_b() returnsDW_DLV_ERROR if it fails, andDW_DLV_OK if it
succeeds.

If it succeeds,*next_cu_header is set to the offset in the .debug_info section of the next compilation-
unit header if it succeeds.On reading the last compilation-unit header in the .debug_info section it contains
the size of the .debug_info section. The next call todwarf_next_cu_header_b() returns
DW_DLV_NO_ENTRY without reading a compilation-unit or setting*next_cu_header. Subsequent
calls todwarf_next_cu_header() repeat the cycle by reading the first compilation-unit and so on.

The other values returned through pointers are the values in the compilation-unit header. If any of
cu_header_length, version_stamp, abbrev_offset, address_size, offset_size, or
extension_size, is NULL, the argument is ignored (meaning it is not an error to provide aNULL
pointer for any or all of these arguments).

cu_header_length returns the length in bytes of the compilation unit header.

version_stamp returns the section version, which would be (for .debug_info) 2 for DWARF2, 3 for
DWARF4, or 4 for DWARF4.

abbrev_offset returns the .debug_abbrev section offset of the abbreviations for this compilation unit.

address_size returns the size of an address in this compilation unit. Which is usually 4 or 8.

offset_size returns the size in bytes of an offset for the compilation unit. The offset size is 4 for 32bit

rev 1.85, 27 November 2009 - 19 -

- 20 -

dwarf and 8 for 64bit dwarf. Thisis the offset size in dwarf data, not the address size inside the executable
code. Theoffset size can be 4 even if embedded in a 64bit elf file (which is normal for 64bit elf), and can
be 8 even in a 32bit elf file (which probably will never be seen in practice).

Theextension_size pointer is only relevant if theoffset_size pointer returns 8. The value is not
normally useful but is returned through the pointer for completeness. The pointerextension_size
returns 0 if the CU is MIPS/IRIX non-standard 64bit dwarf (MIPS/IRIX 64bit dwarf was created years
before DWARF3 defined 64bit dwarf) and returns 4 if the dwarf uses the standard 64bit extension (the 4 is
the size in bytes of the 0xffffffff i n the initial length field which indicates the following 8 bytes in the
.debug_info section are the real length). See the DWARF3 or DWARF4 standard, section 7.4.

5.2.3 dwarf_next_cu_header()

The following is the older form, missing theoffset_size, andextension_size fields. This is kept
for compatibility. All code using this should be changed to usedwarf_next_cu_header_b()

int dwarf_next_cu_header(
Dwarf_debug dbg,
Dwarf_Unsigned *cu_header_length,
Dwarf_Half *version_stamp,
Dwarf_Unsigned *abbrev_offset,
Dwarf_Half *address_size,
Dwarf_Unsigned *next_cu_header,
Dwarf_Error *error);

5.2.4 dwarf_siblingof()

int dwarf_siblingof(
Dwarf_Debug dbg,
Dwarf_Die die,
Dwarf_Die *return_sib,
Dwarf_Error *error)

The functiondwarf_siblingof() returnsDW_DLV_ERROR and sets theerror pointer on error. If
there is no sibling it returnsDW_DLV_NO_ENTRY. When it succeeds,dwarf_siblingof() returns
DW_DLV_OK and sets*return_sib to theDwarf_Die descriptor of the sibling ofdie.

If die is NULL, theDwarf_Die descriptor of the first die in the compilation-unit is returned. This die
has theDW_TAG_compile_unit, DW_TAG_partial_unit, or DW_TAG_type_unit tag.

Dwarf_Die return_sib = 0;
Dwarf_Error error = 0;
int res;
/* in_die might be NULL or a vaid Dwarf_Die */
res = dwarf_siblingof(dbg,in_die,&return_sib, &error);
if (res == DW_DLV_OK) {

/* Use return_sib here. */
dwarf_dealloc(dbg, return_sib, DW_DLA_DIE);
/* return_sib is no longer usable for anything, we

ensure we do not use it accidentally with: */
return_sib = 0;

}

rev 1.85, 27 November 2009 - 20 -

- 21 -

5.2.5 dwarf_child()

int dwarf_child(
Dwarf_Die die,
Dwarf_Die *return_kid,
Dwarf_Error *error)

The functiondwarf_child() returnsDW_DLV_ERROR and sets theerror die on error. If there is no
child it returnsDW_DLV_NO_ENTRY. When it succeeds,dwarf_child() returnsDW_DLV_OK and
sets *return_kid to the Dwarf_Die descriptor of the first child of die. The function
dwarf_siblingof() can be used with the return value ofdwarf_child() to access the other
children ofdie.

Dwarf_Die return_kid = 0;
Dwarf_Error error = 0;
int res;

res = dwarf_child(dbg,in_die,&return_kid, &error);
if (res == DW_DLV_OK) {

/* Use return_kid here. */
dwarf_dealloc(dbg, return_kid, DW_DLA_DIE);
/* return_die is no longer usable for anything, we

ensure we do not use it accidentally with: */
return_kid = 0;

}

5.2.6 dwarf_offdie()

int dwarf_offdie(
Dwarf_Debug dbg,
Dwarf_Off offset,
Dwarf_Die *return_die,
Dwarf_Error *error)

The functiondwarf_offdie() returnsDW_DLV_ERROR and sets theerror die on error. When it
succeeds,dwarf_offdie() returnsDW_DLV_OK and sets*return_die to the theDwarf_Die
descriptor of the debugging information entry atoffset in the section containing debugging information
entries i.e the .debug_info section.A return of DW_DLV_NO_ENTRY means that theoffset in the
section is of a byte containing all 0 bits, indicating that there is no abbreviation code. Meaning this ’die
offset’ is not the offset of a real die, but is instead an offset of a null die, a padding die, or of some random
zero byte: this should not be returned in normal use.It is the user’s responsibility to make sure that
offset is the start of a valid debugging information entry. The result of passing it an invalid offset could
be chaos.

rev 1.85, 27 November 2009 - 21 -

- 22 -

Dwarf_Error error = 0;
Dwarf_Die return_die = 0;
int res;

res = dwarf_offdie(dbg,die_offset,&return_die, &error);
if (res == DW_DLV_OK) {

/* Use return_die here. */
dwarf_dealloc(dbg, return_die, DW_DLA_DIE);
/* return_die is no longer usable for anything, we

ensure we do not use it accidentally with: */
return_die = 0;

}

5.3 Debugging Information Entry Query Operations

These queries return specific information about debugging information entries or a descriptor that can be
used on subsequent queries when given aDwarf_Die descriptor. Note that some operations are specific
to debugging information entries that are represented by aDwarf_Die descriptor of a specific type.For
example, not all debugging information entries contain an attribute having a name, so consequently, a call
to dwarf_diename() using aDwarf_Die descriptor that does not have a name attribute will return
DW_DLV_NO_ENTRY. This is not an error, i.e. calling a function that needs a specific attribute is not an
error for a die that does not contain that specific attribute.

There are several methods that can be used to obtain the value of an attribute in a given die:

1. Call dwarf_hasattr() to determine if the debugging information entry has the attribute of
interest prior to issuing the query for information about the attribute.

2. Supplyanerror argument, and check its value after the call to a query indicates an unsuccessful
return, to determine the nature of the problem.Theerror argument will indicate whether an error
occurred, or the specific attribute needed was missing in that die.

3. Arrange to have an error handling function invoked upon detection of an error (see
dwarf_init()).

4. Calldwarf_attrlist() and iterate through the returned list of attributes, dealing with each one
as appropriate.

5.3.1 dwarf_tag()

int dwarf_tag(
Dwarf_Die die,
Dwarf_Half *tagval,
Dwarf_Error *error)

The functiondwarf_tag() returns thetag of die through the pointertagval if it succeeds.It returns
DW_DLV_OK if it succeeds. It returnsDW_DLV_ERROR on error.

rev 1.85, 27 November 2009 - 22 -

- 23 -

5.3.2 dwarf_dieoffset()

int dwarf_dieoffset(
Dwarf_Die die,
Dwarf_Off * return_offset,
Dwarf_Error *error)

When it succeeds, the functiondwarf_dieoffset() returns DW_DLV_OK and sets
*return_offset to the position ofdie in the section containing debugging information entries (the
return_offset is a section-relative offset). Inother words, it setsreturn_offset to the offset of
the start of the debugging information entry described bydie in the section containing dies i.e
.debug_info. ItreturnsDW_DLV_ERROR on error.

5.3.3 dwarf_die_CU_offset()

int dwarf_die_CU_offset(
Dwarf_Die die,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The functiondwarf_die_CU_offset() is similar todwarf_dieoffset(), except that it puts the
offset of the DIE represented by theDwarf_Die die, from the start of the compilation-unit that it
belongs to rather than the start of .debug_info (thereturn_offset is a CU-relative offset).

5.3.4 dwarf_CU_dieoffset_given_die()

int dwarf_CU_dieoffset_given_die(
Dwarf_Die given_die,
Dwarf_Off *return_offset,
Dwarf_Error *error)

The functiondwarf_CU_dieoffset_given_die() is similar to dwarf_die_CU_offset(),
except that it puts the global offset of the CU DIE owning given_die of .debug_info (the
return_offset is a global section offset).

This is useful when processing a DIE tree and encountering an error or other surprise in a DIE, as the
return_offset can be passed todwarf_offdie() to return a pointer to the CU die of the CU
owning thegiven_die passed todwarf_CU_dieoffset_given_die(). The consumer can extract
information from the CU die and thegiven_die (in the normal way) and print it.

An example (asnippet) of code using this function follows. It assumes thatin_die is a DIE that, for
some reason, you have decided needs CU context printed (assumingprint_die_data does some
reasonable printing).

rev 1.85, 27 November 2009 - 23 -

- 24 -

int res;
Dwarf_Off cudieoff = 0;
Dwarf_Die cudie = 0;

print_die_data(dbg,in_die);
res = dwarf_CU_dieoffset_given_die(in_die,&cudieoff,&error);
if(res != DW_DLV_OK) {

printf("FAIL: dwarf_CU_dieoffset_given_die did not work0);
exit(1);

}
res = dwarf_offdie(dbg,cudieoff,&cudie,&error);
if(res != DW_DLV_OK) {

printf("FAIL: dwarf_offdie did not work0);
exit(1);

}
print_die_data(dbg,cudie);
dwarf_dealloc(dbg,cudie, DW_DLA_DIE);

5.3.5 dwarf_die_CU_offset_range()

int dwarf_die_CU_offset_range(
Dwarf_Die die,
Dwarf_Off *cu_global_offset,
Dwarf_Off *cu_length,
Dwarf_Error *error)

The functiondwarf_die_CU_offset_range() returns the offset of the beginning of the CU and the
length of the CU. The offset and length are of the entire CU that this DIE is a part of. It is used by
dwarfdump (for example) to check the validity of offsets. Mostapplications will have no reason to call this
function.

5.3.6 dwarf_diename()

int dwarf_diename(
Dwarf_Die die,
char ** return_name,
Dwarf_Error *error)

When it succeeds, the functiondwarf_diename() returnsDW_DLV_OK and sets*return_name to a
pointer to a null-terminated string of characters that represents the name attribute of die. It returns
DW_DLV_NO_ENTRY if die does not have a name attribute. It returnsDW_DLV_ERROR if an error
occurred. Thestorage pointed to by a successful return ofdwarf_diename() should be freed using the
allocation typeDW_DLA_STRING when no longer of interest (seedwarf_dealloc()).

5.3.7 dwarf_die_abbrev_code()

rev 1.85, 27 November 2009 - 24 -

- 25 -

int dwarf_die_abbrev_code(Dwarf_Die die,)

The function returns the abbreviation code of the DIE.That is, it returns the abbreviation "index" into the
abbreviation table for the compilation unit of which the DIE is a part.It cannot fail. No errors are possible.
The pointerdie() must not be NULL.

5.3.8 dwarf_attrlist()

int dwarf_attrlist(
Dwarf_Die die,
Dwarf_Attribute** attrbuf,
Dwarf_Signed *attrcount,
Dwarf_Error *error)

When it returnsDW_DLV_OK, the functiondwarf_attrlist() setsattrbuf to point to an array of
Dwarf_Attribute descriptors corresponding to each of the attributes in die, and returns the number of
elements in the array throughattrcount. DW_DLV_NO_ENTRY is returned if the count is zero (no
attrbuf is allocated in this case).DW_DLV_ERROR is returned on error. On a successful return from
dwarf_attrlist(), each of theDwarf_Attribute descriptors should be individually freed using
dwarf_dealloc() with the allocation typeDW_DLA_ATTR, followed by free-ing the list pointed to by
*attrbuf using dwarf_dealloc() with the allocation typeDW_DLA_LIST, when no longer of
interest (seedwarf_dealloc()).

Freeing the attrlist:

Dwarf_Unsigned atcnt;
Dwarf_Attribute *atlist;
int errv;

errv = dwarf_attrlist(somedie, &atlist,&atcnt, &error);
if (errv == DW_DLV_OK) {

for (i = 0; i < atcnt; ++i) {
/* use atlist[i] */
dwarf_dealloc(dbg, atlist[i], DW_DLA_ATTR);

}
dwarf_dealloc(dbg, atlist, DW_DLA_LIST);

}

5.3.9 dwarf_hasattr()

int dwarf_hasattr(
Dwarf_Die die,
Dwarf_Half attr,
Dwarf_Bool *return_bool,
Dwarf_Error *error)

When it succeeds, the functiondwarf_hasattr() returnsDW_DLV_OK and sets*return_bool to
non-zero if die has the attributeattr andzero otherwise. Ifit fails, it returnsDW_DLV_ERROR.

rev 1.85, 27 November 2009 - 25 -

- 26 -

5.3.10 dwarf_attr()

int dwarf_attr(
Dwarf_Die die,
Dwarf_Half attr,
Dwarf_Attribute *return_attr,
Dwarf_Error *error)

When it returns DW_DLV_OK, the function dwarf_attr() sets *return_attr to the
Dwarf_Attribute descriptor ofdie having the attribute attr. It returnsDW_DLV_NO_ENTRY if
attr is not contained indie. It returnsDW_DLV_ERROR if an error occurred.

5.3.11 dwarf_lowpc()

int dwarf_lowpc(
Dwarf_Die die,
Dwarf_Addr * return_lowpc,
Dwarf_Error * error)

The functiondwarf_lowpc() returnsDW_DLV_OK and sets*return_lowpc to the low program
counter value associated with thedie descriptor ifdie represents a debugging information entry with this
attribute. It returnsDW_DLV_NO_ENTRY if die does not have this attribute. It returnsDW_DLV_ERROR
if an error occurred.

5.3.12 dwarf_highpc()

int dwarf_highpc(
Dwarf_Die die,
Dwarf_Addr * return_highpc,
Dwarf_Error *error)

The functiondwarf_highpc() returnsDW_DLV_OK and sets*return_highpc the high program
counter value associated with thedie descriptor ifdie represents a debugging information entry with this
attribute. It returnsDW_DLV_NO_ENTRY if die does not have this attribute. It returnsDW_DLV_ERROR
if an error occurred.

5.3.13 dwarf_bytesize()

Dwarf_Signed dwarf_bytesize(
Dwarf_Die die,
Dwarf_Unsigned *return_size,
Dwarf_Error *error)

When it succeeds,dwarf_bytesize() returnsDW_DLV_OK and sets*return_size to the number
of bytes needed to contain an instance of the aggregate debugging information entry represented bydie. It
returnsDW_DLV_NO_ENTRY if die does not contain the byte size attribute DW_AT_byte_size. It
returnsDW_DLV_ERROR if an error occurred.

rev 1.85, 27 November 2009 - 26 -

- 27 -

5.3.14 dwarf_bitsize()

int dwarf_bitsize(
Dwarf_Die die,
Dwarf_Unsigned *return_size,
Dwarf_Error *error)

When it succeeds,dwarf_bitsize() returnsDW_DLV_OK and sets*return_size to the number of
bits occupied by the bit field value that is an attribute of the given die. It returnsDW_DLV_NO_ENTRY if
die does not contain the bit size attribute DW_AT_bit_size. It returnsDW_DLV_ERROR if an error
occurred.

5.3.15 dwarf_bitoffset()

int dwarf_bitoffset(
Dwarf_Die die,
Dwarf_Unsigned *return_size,
Dwarf_Error *error)

When it succeeds,dwarf_bitoffset() returnsDW_DLV_OK and sets*return_size to the number
of bits to the left of the most significant bit of the bit field value. Thisbit offset is not necessarily the net bit
offset within the structure or class , sinceDW_AT_data_member_location may give a byte offset to
this DIE and the bit offset returned through the pointer does not include the bits in the byte offset. It
returnsDW_DLV_NO_ENTRY if die does not contain the bit offset attribute DW_AT_bit_offset. It
returnsDW_DLV_ERROR if an error occurred.

5.3.16 dwarf_srclang()

int dwarf_srclang(
Dwarf_Die die,
Dwarf_Unsigned *return_lang,
Dwarf_Error *error)

When it succeeds,dwarf_srclang() returns DW_DLV_OK and sets*return_lang to a code
indicating the source language of the compilation unit represented by the descriptordie. It returns
DW_DLV_NO_ENTRY if die does not represent a source file debugging information entry (i.e. contain the
attributeDW_AT_language). It returnsDW_DLV_ERROR if an error occurred.

5.3.17 dwarf_arrayorder()

int dwarf_arrayorder(
Dwarf_Die die,
Dwarf_Unsigned *return_order,
Dwarf_Error *error)

When it succeeds,dwarf_arrayorder() returnsDW_DLV_OK and sets*return_order a code
indicating the ordering of the array represented by the descriptordie. It returnsDW_DLV_NO_ENTRY if
die does not contain the array order attributeDW_AT_ordering. It returnsDW_DLV_ERROR if an error
occurred.

rev 1.85, 27 November 2009 - 27 -

- 28 -

5.4 Attribute Queries

Based on the attributes form, these operations are concerned with returning uninterpreted attribute data.
Since it is not always obvious from the return value of these functions if an error occurred, one should
always supply anerror parameter or have arranged to have an error handling function invoked (see
dwarf_init()) to determine the validity of the returned value and the nature of any errors that may have
occurred.

A Dwarf_Attribute descriptor describes an attribute of a specific die. Thus, each
Dwarf_Attribute descriptor is implicitly associated with a specific die.

5.4.1 dwarf_hasform()

int dwarf_hasform(
Dwarf_Attribute attr,
Dwarf_Half form,
Dwarf_Bool *return_hasform,
Dwarf_Error *error)

The functiondwarf_hasform() returnsDW_DLV_OK and andputs anon-zero
value in the*return_hasform boolean if the attribute represented by theDwarf_Attribute
descriptorattr has the attribute formform. If the attribute does not have that form zero is put into
*return_hasform. DW_DLV_ERROR is returned on error.

5.4.2 dwarf_whatform()

int dwarf_whatform(
Dwarf_Attribute attr,
Dwarf_Half *return_form,
Dwarf_Error *error)

When it succeeds,dwarf_whatform() returnsDW_DLV_OK and sets*return_form to the attribute
form code of the attribute represented by theDwarf_Attribute descriptor attr. It returns
DW_DLV_ERROR on error. An attribute using DW_FORM_indirect effectively has two forms. This
function returns the ’final’ form forDW_FORM_indirect, not theDW_FORM_indirect itself. This
function is what most applications will want to call.

5.4.3 dwarf_whatform_direct()

int dwarf_whatform_direct(
Dwarf_Attribute attr,
Dwarf_Half *return_form,
Dwarf_Error *error)

When it succeeds,dwarf_whatform_direct() returnsDW_DLV_OK and sets*return_form to
the attribute form code of the attribute represented by theDwarf_Attribute descriptorattr. It
returns DW_DLV_ERROR on error. An attribute usingDW_FORM_indirect effectively has two forms.
This returns the form ’directly’ in the initial form field. Sowhen the form field isDW_FORM_indirect
this call returns theDW_FORM_indirect form, which is sometimes useful for dump utilities.

rev 1.85, 27 November 2009 - 28 -

- 29 -

5.4.4 dwarf_whatattr()

int dwarf_whatattr(
Dwarf_Attribute attr,
Dwarf_Half *return_attr,
Dwarf_Error *error)

When it succeeds,dwarf_whatattr() returnsDW_DLV_OK and sets*return_attr to the attribute
code represented by theDwarf_Attribute descriptorattr. It returnsDW_DLV_ERROR on error.

5.4.5 dwarf_formref()

int dwarf_formref(
Dwarf_Attribute attr,
Dwarf_Off *return_offset,
Dwarf_Error *error)

When it succeeds,dwarf_formref() returnsDW_DLV_OK and sets*return_offset to the CU-
relative offset represented by the descriptorattr if the form of the attribute belongs to theREFERENCE
class. attr must be a CU-local reference, not formDW_FORM_ref_addr and not
DW_FORM_sec_offset . It is an error for the form to not belong to this class.It returns
DW_DLV_ERROR on error. See alsodwarf_global_formref below.

5.4.6 dwarf_global_formref()

int dwarf_global_formref(
Dwarf_Attribute attr,
Dwarf_Off *return_offset,
Dwarf_Error *error)

When it succeeds,dwarf_global_formref() returnsDW_DLV_OK and sets*return_offset to
the section-relative offset represented by the descriptorattr if the form of the attribute belongs to the
REFERENCE or other section-references classes.

attr can be any leg al REFERENCE class form plus DW_FORM_ref_addr or
DW_FORM_sec_offset. It is an error for the form to not belong to one of the reference classes.It
returnsDW_DLV_ERROR on error. See alsodwarf_formref above.

The caller must determine which section the offset returned applies to. The function
dwarf_get_form_class() is useful to determine the applicable section.

The function converts CU relative offsets from forms such as DW_FORM_ref4 into global section offsets.

5.4.7 dwarf_formaddr()

rev 1.85, 27 November 2009 - 29 -

- 30 -

int dwarf_formaddr(
Dwarf_Attribute attr,
Dwarf_Addr * return_addr,
Dwarf_Error *error)

When it succeeds,dwarf_formaddr() returnsDW_DLV_OK and sets*return_addr to the address
represented by the descriptorattr if the form of the attribute belongs to theADDRESS class. Itis an error
for the form to not belong to this class. It returnsDW_DLV_ERROR on error.

5.4.8 dwarf_formflag()

int dwarf_formflag(
Dwarf_Attribute attr,
Dwarf_Bool * return_bool,
Dwarf_Error *error)

When it succeeds,dwarf_formflag() returnsDW_DLV_OK and sets*return_bool 1 (i.e. true) (if
the attribute has a non-zero value) or0 (i.e. false) (if the attribute has a zero value). It returns
DW_DLV_ERROR on error or if theattr does not have form flag.

5.4.9 dwarf_formudata()

int dwarf_formudata(
Dwarf_Attribute attr,
Dwarf_Unsigned * return_uvalue,
Dwarf_Error * error)

The function dwarf_formudata() returns DW_DLV_OK and sets*return_uvalue to the
Dwarf_Unsigned value of the attribute represented by the descriptorattr if the form of the attribute
belongs to theCONSTANT class. It is an error for the form to not belong to this class. It returns
DW_DLV_ERROR on error.

5.4.10 dwarf_formsdata()

int dwarf_formsdata(
Dwarf_Attribute attr,
Dwarf_Signed * return_svalue,
Dwarf_Error *error)

The function dwarf_formsdata() returns DW_DLV_OK and sets*return_svalue to the
Dwarf_Signed value of the attribute represented by the descriptorattr if the form of the attribute
belongs to theCONSTANT class. Itis an error for the form to not belong to this class. If the size of the
data attribute referenced is smaller than the size of theDwarf_Signed type, its value is sign extended. It
returnsDW_DLV_ERROR on error.

5.4.11 dwarf_formblock()

rev 1.85, 27 November 2009 - 30 -

- 31 -

int dwarf_formblock(
Dwarf_Attribute attr,
Dwarf_Block ** return_block,
Dwarf_Error * error)

The functiondwarf_formblock() returnsDW_DLV_OK and sets*return_block to a pointer to a
Dwarf_Block structure containing the value of the attribute represented by the descriptorattr if the
form of the attribute belongs to theBLOCK class. Itis an error for the form to not belong to this class.The
storage pointed to by a successful return ofdwarf_formblock() should be freed using the allocation
type DW_DLA_BLOCK, when no longer of interest (seedwarf_dealloc()). It returns
DW_DLV_ERROR on error.

5.4.12 dwarf_formstring()

int dwarf_formstring(
Dwarf_Attribute attr,
char ** return_string,
Dwarf_Error *error)

The functiondwarf_formstring() returnsDW_DLV_OK and sets*return_string to a pointer to
a null-terminated string containing the value of the attribute represented by the descriptorattr if the form
of the attribute belongs to theSTRING class. Itis an error for the form to not belong to this class.The
storage pointed to by a successful return ofdwarf_formstring() should not be freed.The pointer
points into existing DWARF memory and the pointer becomes stale/invalid after a call to
dwarf_finish. dwarf_formstring() returnsDW_DLV_ERROR on error.

5.4.13 dwarf_formsig8()

int dwarf_formsig8(
Dwarf_Attribute attr,
Dwarf_Sig8 * return_sig8,
Dwarf_Error * error)

The function dwarf_formsig8() returns DW_DLV_OK and copies the 8 byte signature to a
Dwarf_Sig8 structure provided by the caller if the form of the attribute is of form
DW_FORM_ref_sig8 (a member of theREFERENCE class). Itis an error for the form to be anything
but DW_FORM_ref_sig8. It returnsDW_DLV_ERROR on error.

This form is used to refer to a type unit.

5.4.14 dwarf_formsig8()

int dwarf_formexprloc(
Dwarf_Attribute attr,
Dwarf_Unsigned * return_exprlen,
Dwarf_Ptr * block_ptr,
Dwarf_Error * error)

The functiondwarf_formexprloc() returnsDW_DLV_OK and sets the two values thru the pointers to
the length and bytes of the DW_FORM_exprloc entry if the form of the attribute is of form

rev 1.85, 27 November 2009 - 31 -

- 32 -

DW_FORM_experloc. It is an error for the form to be anything but DW_FORM_exprloc. It returns
DW_DLV_ERROR on error.

On success the value set through thereturn_exprlen pointer is the length of the location expression.
On success the value set through theblock_ptr pointer is a pointer to the bytes of the location
expression itself.

5.4.15 dwarf_get_form_class()

0. UNIX is a registered trademark of UNIX System Laboratories, Inc. in the United States and other countries.

i

